24 research outputs found

    Investor sentiment in the theoretical field of behavioural finance

    Get PDF
    Investor sentiment is a research area in the theoretical field of behavioural finance that analyses the sentiment of investors and the way it influences stock market activity. Recently, there has been an increase in the number of publications in this area, which indicates its incremental relevance. To date, there is no consensus on the theoretical structure of behavioural finance nor on the investor sentiment research area. We have used co-citation, bibliographic coupling and co-occurrence analysis to provide an overview of the structure of investor sentiment. Therefore, this study contributes to defining the theoretical structure of investor sentiment by identifying the foundations of the research area and main journals, references, authors, or keywords, which represent the core of knowledge of this research area. The results obtained suggest that investor sentiment is related to efficient market theory and behavioural finance theories. Furthermore, investor sentiment is a relevant research field, especially since 2014. Advances in computer science or theories based on physics or mathematics can help to better define the influence of investor sentiment on stock markets. This study advances research on investor sentiment within the field of behavioural finance, thus showing its relevance

    To engage or not to engage in organisational citizenship behaviour: that is the question!

    Get PDF
    Organisational citizenship behaviour (OCB) can be defined as discretional, voluntary and useful informal behaviour that is not directly acknowledged by the organisation’s formal reward system. Such behaviour refers to actions that go beyond performing the tasks defined as part of one’s job. Previous studies have shown that organisations that promote OCB can notably improve their productivity and efficiency. It is therefore important to know what causes employees to engage in OCB rather than just limiting themselves to doing what is strictly expected at work. However, it is more important to know why they do not engage in OCB. Using a sample of public prison employees and the fsQCA method, this study examines how the combined effects of organisational characteristics, leadership behaviours and individual characteristics lead to the absence of OCB. The results indicate that the absence of affective commitment, or job satisfaction, or interactional justice is a necessary condition for the absence of OCB. Four conditions are identified as sufficient, and the absence of affective commitment and the presence of laissez-faire leadership are found to be the most relevant conditions for the absence of OCB. Managerial implications and directions for future studies are discussed at the end of the paper

    Observation of double J/ψ\psi meson production in pPb collisions at sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe first observation of the concurrent production of two J/ψ\psi mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb1^{-1}. The two J/ψ\psi mesons are reconstructed in their μ+μ\mu^+\mu^- decay channels with transverse momenta pTp_\mathrm{T}>\gt 6.5 GeV and rapidity y\lvert y \rvert<\lt 2.4. Events where one of the J/ψ\psi mesons is reconstructed in the dielectron channel are also considered in the search. The pPb \to J/ψ\psiJ/ψ\psi+X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is σ\sigma(pPb\to J/ψ\psiJ/ψ\psi+X)= 22.0 ±\pm 8.9 (stat) ±\pm 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/ψ\psi mesons produced in single (SPS) and double (DPS) parton scatterings yields σSPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to\mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{SPS} = 16.5 ±\pm 10.8 (stat) ±\pm 0.1 (syst) nb and σDPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to \mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{DPS} = 5.4 ±\pm 6.2 (stat) ±\pm 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of σeff\sigma_\text{eff}>\gt 1.0 mb at 95% confidence level

    Measurement of the ttˉ\mathrm{t\bar{t}}H and tH production rates in the H \tobbˉ\mathrm{b\bar{b}} decay channel using proton-proton collision data at s\sqrt{s} = 13 TeV

    No full text
    International audienceAn analysis of the production of a Higgs boson (H) in association with a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}H) or a single top quark (tH) is presented. The Higgs boson decay into a bottom quark-antiquark pair (H \tobbˉ\mathrm{b\bar{b}}) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb1^{-1}. The observed ttˉ\mathrm{t\bar{t}}H production rate relative to the standard model expectation is 0.33 ±\pm 0.26 = 0.33 ±\pm 0.17 (stat) ±\pm 0.21 (syst). Additionally, the ttˉ\mathrm{t\bar{t}}H production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.36.0+9.2^{+9.2}_{-6.0}. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the ttˉ\mathrm{t\bar{t}}H and tH production rates, and the results are combined with those obtained in other Higgs boson decay channels

    Search for long-lived heavy neutral leptons in proton-proton collision events with a lepton-jet pair associated with a secondary vertex at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived heavy neutral leptons (HNLs) using proton-proton collision data corresponding to an integrated luminosity of 138 fb1^{-1} collected at s\sqrt{s} = 13 TeV with the CMS detector at the CERN LHC is presented. Events are selected with a charged lepton originating from the primary vertex associated with the proton-proton interaction, as well as a second charged lepton and a hadronic jet associated with a secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No excess of events above the standard model expectation is observed. Exclusion limits at 95% confidence level are evaluated for HNLs that mix with electron and/or muon neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square mixing parameter values reaching as low as 2 ×\times 107^{-7}. For masses above 11 GeV, the presented limits exceed all previous results in the semileptonic decay channel, and for some of the considered scenarios are the strongest to date

    Measurement of inclusive and differential cross sections for W+^{+}W^{-} production in proton-proton collisions at s= \sqrt{s} = 13.6 TeV

    No full text
    Measurements at s= \sqrt{s}= 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1 ^{-1} . Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^{+}W^{-} production cross section of 125.7 ± \pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions.Measurements at s\sqrt{s} = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1^{-1}. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^+W^- production cross section of 125.7 ±\pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s= \sqrt{s} = 13 TeV using leptonic W boson decays

    No full text
    A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1 ^{-1} . Particle X has electric charge ± \pm 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1^{-1}. Particle X has electric charge ±\pm1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)
    corecore