165 research outputs found

    Thermal Quantum Fields in Static Electromagnetic Backgrounds

    Get PDF
    We present and discuss, at a general level, new mathematical results on the spatial nonuniformity of thermal quantum fields coupled minimally to static background electromagnetic potentials. Two distinct examples are worked through in some detail: uniform (parallel and perpendicular) background electric and magnetic fields coupled to a thermal quantum scalar field.Comment: 22 page

    Complete High Temperature Expansions for One-Loop Finite Temperature Effects

    Get PDF
    We develop exact, simple closed form expressions for partition functions associated with relativistic bosons and fermions in odd spatial dimensions. These expressions, valid at high temperature, include the effects of a non-trivial Polyakov loop and generalize well-known high temperature expansions. The key technical point is the proof of a set of Bessel function identities which resum low temperature expansions into high temperature expansions. The complete expressions for these partition functions can be used to obtain one-loop finite temperature contributions to effective potentials, and thus free energies and pressures.Comment: 9 pages, RevTeX, no figures. To be published in Phys. Rev D. v2 has revised introduction and conclusions, plus a few typographical errors are corrected; v3 corrects one typ

    Applications of the Mellin-Barnes integral representation

    Get PDF
    We apply the Mellin-Barnes integral representation to several situations of interest in mathematical-physics. At the purely mathematical level, we derive useful asymptotic expansions of different zeta-functions and partition functions. These results are then employed in different topics of quantum field theory, which include the high-temperature expansion of the free energy of a scalar field in ultrastatic curved spacetime, the asymptotics of the pp-brane density of states, and an explicit approach to the asymptotics of the determinants that appear in string theory.Comment: 20 pages, LaTe

    Generalized partition functions and interpolating statistics

    Full text link
    We show that the assumption of quasiperiodic boundary conditions (those that interpolate continuously periodic and antiperiodic conditions) in order to compute partition functions of relativistic particles in 2+1 space-time can be related with anyonic physics. In particular, in the low temperature limit, our result leads to the well known second virial coefficient for anyons. Besides, we also obtain the high temperature limit as well as the full temperature dependence of this coefficient.Comment: 12 pages, Latex, updated and enlarged versio

    Confined two-dimensional fermions at finite density

    Full text link
    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.Comment: 15 pages, LaTe

    Role of the rho meson in the description of pion electroproduction experiments at JLab

    Full text link
    We study the p(e,e' pi+)n reaction in the framework of an effective Lagrangian approach including nucleon, pi and rho meson degrees of freedom and show the importance of the rho-meson t-pole contribution to sigmaT, the transverse part of cross section. We test two different field representations of the rho meson, vector and tensor, and find that the tensor representation of the rho meson is more reliable in the description of the existing data. In particular, we show that the rho-meson t-pole contribution, including the interference with an effective non-local contact term, sufficiently improves the description of the recent JLab data at invariant mass W less 2.2 GeV and Q2 less 2.5 GeV2/c2. A ``soft'' variant of the strong piNN and rhoNN form factors is also found to be compatible with these data. On the basis of the successful description of both the sigmaL and sigmaT parts of the cross section we discuss the importance of taking into account the sigmaT data when extracting the charge pion form factor Fpi from sigmaL.Comment: 23 pages, 6 figures, accepted for publication in Phys. Rev.

    The heat kernel for deformed spheres

    Full text link
    We derive the asymptotic expansion of the heat kernel for a Laplace operator acting on deformed spheres. We calculate the coefficients of the heat kernel expansion on two- and three-dimensional deformed spheres as functions of deformation parameters. We find that under some deformation the conformal anomaly for free scalar fields on R4×S~2R^4\times \tilde S^2 and R6×S~2R^6\times \tilde S^2 is canceled.Comment: 10 pages, latex, no figure

    Phenomenological Equations of State for the Quark-Gluon Plasma

    Full text link
    Two phenomenological models describing an SU(N) quark-gluon plasma are presented. The first is obtained from high temperature expansions of the free energy of a massive gluon, while the second is derived by demanding color neutrality over a certain length scale. Each model has a single free parameter, exhibits behavior similar to lattice simulations over the range T_d - 5T_d, and has the correct blackbody behavior for large temperatures. The N = 2 deconfinement transition is second order in both models, while N = 3,4, and 5 are first order. Both models appear to have a smooth large-N limit. For N >= 4, it is shown that the trace of the Polyakov loop is insufficient to characterize the phase structure; the free energy is best described using the eigenvalues of the Polyakov loop. In both models, the confined phase is characterized by a mutual repulsion of Polyakov loop eigenvalues that makes the Polyakov loop expectation value zero. In the deconfined phase, the rotation of the eigenvalues in the complex plane towards 1 is responsible for the approach to the blackbody limit over the range T_d - 5T_d. The addition of massless quarks in SU(3) breaks Z(3) symmetry weakly and eliminates the deconfining phase transition. In contrast, a first-order phase transition persists with sufficiently heavy quarks.Comment: 22 pages, RevTeX, 9 eps file

    Finite Temperature and Density Effect on Symmetry Breaking by Wilson Loops

    Full text link
    A finite temperature and density effect of Wilson loop elements on non-simply connected space is investigated in the model suggested by Hosotani. Using one-loop calculations it is shown that the value of an "order parameter" does not shift as the temperature grows. We find that finite density effect is of much importance for restoration of symmetry.Comment: 11pages, no figur

    Non-Abelian Excitations of the Quark-Gluon Plasma

    Full text link
    We present new, non-abelian, solutions to the equations of motion which describe the collective excitations of a quark-gluon plasma at high temperature. These solutions correspond to spatially uniform color oscillations.Comment: 8 pages LaTex, 1 figure (not included; available upon request), Saclay preprint T94/0
    corecore