12,097 research outputs found

    Bosonic and fermionic Weinberg-Joos (j,0)+ (0,j) states of arbitrary spins as Lorentz-tensors or tensor-spinors and second order theory

    Full text link
    We propose a general method for the description of arbitrary single spin-j states transforming according to (j,0)+(0,j) carrier spaces of the Lorentz algebra in terms of Lorentz-tensors for bosons, and tensor-spinors for fermions, and by means of second order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher \partial^{2j} order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz-tensor (tensor-spinor) representation spaces hosting one sole (j,0)+(0,j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin-j sector of interest from the rest, while preserving the separate Lorentz- and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz-tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2,0)+ (0,3/2) is comfortably described by a second order Lagrangian in the basis of the totally antisymmetric Lorentz tensor-spinor of second rank, \Psi_[ \mu\nu]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2,0)+(0,3/2) as part of \Psi_[\mu\nu] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.Comment: LaTex 34 pages, 1 table, 8 figures. arXiv admin note: text overlap with arXiv:1312.581

    Ballistic Localization in Quasi-1D Waveguides with Rough Surfaces

    Full text link
    Structure of eigenstates in a periodic quasi-1D waveguide with a rough surface is studied both analytically and numerically. We have found a large number of "regular" eigenstates for any high energy. They result in a very slow convergence to the classical limit in which the eigenstates are expected to be completely ergodic. As a consequence, localization properties of eigenstates originated from unperturbed transverse channels with low indexes, are strongly localized (delocalized) in the momentum (coordinate) representation. These eigenstates were found to have a quite unexpeted form that manifests a kind of "repulsion" from the rough surface. Our results indicate that standard statistical approaches for ballistic localization in such waveguides seem to be unappropriate.Comment: 5 pages, 4 figure

    Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond

    Get PDF
    The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ~70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy
    • …
    corecore