2 research outputs found
Separability problem for multipartite states of rank at most four
One of the most important problems in quantum information is the separability
problem, which asks whether a given quantum state is separable. We investigate
multipartite states of rank at most four which are PPT (i.e., all their partial
transposes are positive semidefinite). We show that any PPT state of rank two
or three is separable and has length at most four. For separable states of rank
four, we show that they have length at most six. It is six only for some
qubit-qutrit or multiqubit states. It turns out that any PPT entangled state of
rank four is necessarily supported on a 3x3 or a 2x2x2 subsystem. We obtain a
very simple criterion for the separability problem of the PPT states of rank at
most four: such a state is entangled if and only if its range contains no
product vectors. This criterion can be easily applied since a four-dimensional
subspace in the 3x3 or 2x2x2 system contains a product vector if and only if
its Pluecker coordinates satisfy a homogeneous polynomial equation (the Chow
form of the corresponding Segre variety). We have computed an explicit
determinantal expression for the Chow form in the former case, while such
expression was already known in the latter case.Comment: 19 page