3,953 research outputs found

    Measuring The Collective Flow With Jets

    Full text link
    In nucleus--nucleus collisions, high-pT partons interact with a dense medium, which possesses strong collective flow components. Here, we demonstrate that the resulting medium-induced gluon radiation does not depend solely on the energy density of the medium, but also on the collective flow. Both components cannot be disentangled on the basis of leading hadron spectra, but the measurement of particle production associated to high-pT trigger particles, jet-like correlations and jets, allows for their independent characterization. In particular, we show that flow effects lead to a characteristic breaking of the rotational symmetry of the average jet energy and jet multiplicity distribution in the η×ϕ\eta \times \phi-plane. We argue that data on the medium-induced broadening of jet-like particle correlations in Au+Au collisions at RHIC provide a first evidence for a significant distortion of parton fragmentation due to the longitudinal collective flow.Comment: 4 pages, Latex, 3 eps-figure

    Algebraic {qq}-Integration and Fourier Theory on Quantum and Braided Spaces

    Full text link
    We introduce an algebraic theory of integration on quantum planes and other braided spaces. In the one dimensional case we obtain a novel picture of the Jackson qq-integral as indefinite integration on the braided group of functions in one variable xx. Here xx is treated with braid statistics qq rather than the usual bosonic or Grassmann ones. We show that the definite integral ∫x\int x can also be evaluated algebraically as multiples of the integral of a qq-Gaussian, with xx remaining as a bosonic scaling variable associated with the qq-deformation. Further composing our algebraic integration with a representation then leads to ordinary numbers for the integral. We also use our integration to develop a full theory of qq-Fourier transformation FF. We use the braided addition Δx=x⊗1+1⊗x\Delta x=x\otimes 1+1\otimes x and braided-antipode SS to define a convolution product, and prove a convolution theorem. We prove also that F2=SF^2=S. We prove the analogous results on any braided group, including integration and Fourier transformation on quantum planes associated to general R-matrices, including qq-Euclidean and qq-Minkowski spaces.Comment: 50 pages. Minor changes, added 3 reference

    Spin conductivity in almost integrable spin chains

    Full text link
    The spin conductivity in the integrable spin-1/2 XXZ-chain is known to be infinite at finite temperatures T for anisotropies -1 < Delta < 1. Perturbations which break integrability, e.g. a next-nearest neighbor coupling J', render the conductivity finite. We construct numerically a non-local conserved operator J_parallel which is responsible for the finite spin Drude weight of the integrable model and calculate its decay rate for small J'. This allows us to obtain a lower bound for the spin conductivity sigma_s >= c(T) / J'^2, where c(T) is finite for J' to 0. We discuss the implication of our result for the general question how non-local conservation laws affect transport properties.Comment: 6 pages, 5 figure

    Lower bounds for the conductivities of correlated quantum systems

    Full text link
    We show how one can obtain a lower bound for the electrical, spin or heat conductivity of correlated quantum systems described by Hamiltonians of the form H = H0 + g H1. Here H0 is an interacting Hamiltonian characterized by conservation laws which lead to an infinite conductivity for g=0. The small perturbation g H1, however, renders the conductivity finite at finite temperatures. For example, H0 could be a continuum field theory, where momentum is conserved, or an integrable one-dimensional model while H1 might describe the effects of weak disorder. In the limit g to 0, we derive lower bounds for the relevant conductivities and show how they can be improved systematically using the memory matrix formalism. Furthermore, we discuss various applications and investigate under what conditions our lower bound may become exact.Comment: Title changed; 9 pages, 2 figure

    Low-pT Collective Flow Induces High-pT Jet Quenching

    Full text link
    Data on low-pT hadronic spectra are widely regarded as evidence of a hydrodynamic expansion in nucleus-nucleus collisions. In this interpretation, different hadron species emerge from a common medium that has built up a strong collective velocity field. Here, we show that the existence of a collective flow field implies characteristic modifications of high-pT parton fragmentation. We generalize the formalism of parton energy loss to the case of flow-induced, oriented momentum transfer. We also discuss how to embed this calculation in hydrodynamic simulations. Flow effects are found to result generically in characteristic asymmetries in the eta-phi-plane of jet energy distributions and of multiplicity distributions associated to high-pT trigger particles. But collective flow also contributes to the medium-induced suppression of single inclusive high-pT hadron spectra. In particular, we find that low-pT elliptic flow can induce a sizeable additional contribution to the high-pT azimuthal asymmetry by selective elimination of those hard partons which propagate with significant inclination against the flow field. This reduces at least partially the recently observed problem that models of parton energy loss tend to underpredict the large azimuthal asymmetry v2 of high-pT hadronic spectra in semi-peripheral Au+Au collisions.Comment: 26 pages LaTeX, 11 eps-figure

    A translation control reporter system (TCRS) for the analysis of translationally controlled processes in the vertebrate cell

    Get PDF
    Regulation of translation is critical for the accurate expression of a broad variety of genes that function in cell cycle progression and cell differentiation, as well as in the adaptation to cellular stress. The aetiologies of a number of human diseases, including cancer, have been linked to mutations in genes that control mRNA translation, or in cis-regulatory mRNA-sequences. Therefore, research on translational control and its therapeutic appliance has become most important. However, to date only a limited number of therapeutic drugs are known to affect translational control. Here we describe a novel, straightforward approach for the detection of cellular translational activity. We developed a Translational Control Reporter System (TCRS), which utilizes the cis-regulatory upstream open reading frame (uORF) from the c/ebpα locus to direct the translation of a dual reporter gene into two unique reporter peptides. The peptides contain a pre-pro-trypsin (PPT) signal for secretion into the medium and distinct immunogenic epitopes for detection and quantification purposes. TCRS-peptide expression levels reflect changes of translation initiation induced by serum growth factors, drugs or translation factor mutants. TCRS can be tailored to various research settings and the system may accomplish a broad application to uncover links between translational control and drugs

    Shock Waves in Nanomechanical Resonators

    Full text link
    The dream of every surfer is an extremely steep wave propagating at the highest speed possible. The best waves for this would be shock waves, but are very hard to surf. In the nanoscopic world the same is true: the surfers in this case are electrons riding through nanomechanical devices on acoustic waves [1]. Naturally, this has a broad range of applications in sensor technology and for communication electronics for which the combination of an electronic and a mechanical degree of freedom is essential. But this is also of interest for fundamental aspects of nano-electromechanical systems (NEMS), when it comes to quantum limited displacement detection [2] and the control of phonon number states [3]. Here, we study the formation of shock waves in a NEMS resonator with an embedded two-dimensional electron gas using surface acoustic waves. The mechanical displacement of the nano-resonator is read out via the induced acoustoelectric current. Applying acoustical standing waves we are able to determine the anomalous acoustocurrent. This current is only found in the regime of shock wave formation. We ontain very good agreement with model calculations.Comment: 14 Pages including 4 figure
    • …
    corecore