44 research outputs found
Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation
Background
Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.
Results
High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.
Conclusion
Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.
The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population
Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles
We investigate by first-principles simulations the resonant electron-transfer
lifetime from the excited state of an organic adsorbate to a semiconductor
surface, namely isonicotinic acid on rutile TiO(110). The
molecule-substrate interaction is described using density functional theory,
while the effect of a truly semi-infinite substrate is taken into account by
Green's function techniques. Excitonic effects due to the presence of
core-excited atoms in the molecule are shown to be instrumental to understand
the electron-transfer times measured using the so-called core-hole-clock
technique. In particular, for the isonicotinic acid on TiO(110), we find
that the charge injection from the LUMO is quenched since this state lies
within the substrate band gap. We compute the resonant charge-transfer times
from LUMO+1 and LUMO+2, and systematically investigate the dependence of the
elastic lifetimes of these states on the alignment among adsorbate and
substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry
Fingerprints of sp1 Hybridized C in the near-edge X-ray absorption spectra of surface-grown materials
Carbon structures comprising sp1 chains (e.g., polyynes or cumulenes) can be synthesized by exploiting on-surface chemistry and molecular self-assembly of organic precursors, opening to the use of the full experimental and theoretical surface-science toolbox for their characterization. In particular, polarized near-edge X-ray absorption fine structure (NEXAFS) can be used to determine molecular adsorption angles and is here also suggested as a probe to discriminate sp1/sp2 character in the structures. We present an ab initio study of the polarized NEXAFS spectrum of model and real sp1/sp2 materials. Calculations are performed within density functional theory with plane waves and pseudopotentials, and spectra are computed by core-excited C potentials. We evaluate the dichroism in the spectrum for ideal carbynes and highlight the main differences relative to typical sp2 systems. We then consider a mixed polymer alternating sp1 C4 units with sp2 biphenyl groups, recently synthesized on Au(111), as well as other linear structures and two-dimensional networks, pointing out a spectral line shape specifically due to the the presence of linear C chains. Our study suggests that the measurements of polarized NEXAFS spectra could be used to distinctly fingerprint the presence of sp1 hybridization in surface-grown C structures
Effects of the introduction of a chromium oxide monolayer at the C60/Fe(001) interface
The introduction of a two-dimensional oxide layer at the interface between an organic semiconductor and a ferromagnetic metal (spinterface) can help in tailoring the formation of spin-polarized hybridized interface states. Here, we consider the case of a Cr4O5 monolayer at the C-60/Fe(001) interface, which is already known to feature the occurrence of spin-polarized states in the fullerene molecules. In this work, we employ scanning tunneling microscopy/spectroscopy and photoemission spectroscopy to show that the C-60/Cr4O5/Fe(001) spinterface is characterized by the formation of a well-ordered fullerene monolayer and of strongly hybridized interface states. These experimental results are discussed in terms of state-of-the-art ab lingo calculations of the structural, electronic, and magnetic properties at the interface
The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica)
The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife
Ancient DNA analysis suggests negligible impact of the Wari Empire expansion in Peru's Central Coast during the Middle Horizon
The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region's demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.Guido Valverde, MarÃa Inés Barreto Romero, Isabel Flores Espinoza, Alan Cooper, Lars Fehren-Schmitz, Bastien Llamas, Wolfgang Haa
Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of north east Europe
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.Clio Der Sarkissian, Oleg Balanovsky, Guido Brandt, Valery Khartanovich, Alexandra Buzhilova, Sergey Koshel, Valery Zaporozhchenko, Detlef Gronenborn, Vyacheslav Moiseyev, Eugen Kolpakov, Vladimir Shumkin, Kurt W. Alt, Elena Balanovska, Alan Cooper, Wolfgang Haak, the Genographic Consortiu
M 9 Step by step. Un nuovo polo culturale nella rigenerazione urbana di Venezia-Mestre.
la pubblicazione contiene tutta la documentazione progettuale e autorizzativa del più importante nuovo progetto museale in corso di sviluppo in Itali