1 research outputs found

    A security study of Bluetooth-powered robot toy

    No full text
    Aim: A smart toy robot has its intellect with circuits on board. It has a built-in microprocessor, sensors of one or more types, a mechanical system including moving parts, and some firmware to control and tie the parts together. The embedded sensors and devices help to create their functionality. These devices include wireless communication for data transfer. One such device for wireless communication is Bluetooth, which can be dangerous due to attack vulnerabilities, especially on Bluetooth Low Energy (BLE) devices.Methods: In addition to discovering vulnerabilities in Bluetooth communication, common issues have been identified, including related attacks, threats, malware, and vulnerabilities. To identify specific attacks for Bluetooth devices used in smart toys, this study adopted Qoopers, a robot capable of integrating different devices into its model. Qoopers was tested using security frameworks to simulate attacks.Results: We found that devices with BLE are more susceptible to attack. Qoopers was exposed to security frameworks used in restricted conditions, demonstrating that they can be hacked using a man-in-the-middle (MITM) attack and eavesdropping on data transfer. This paper also discusses solutions to prevent Bluetooth attacks.Conclusion: Bluetooth communication is vulnerable to different attacks, including MITM. This happens even with Qoopers robot when it is reprogrammed with customized applications with less security. These smart toy robots are used mainly by children under 16, who can make mistakes by ignoring security, focusing only on functionality, increasing the risk of personal information theft and other threats
    corecore