4,428 research outputs found

    New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions

    Full text link
    We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions (QPTs) in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and hence provide a time-resolved understanding of QPTs encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other, and for adiabatic quantum computing schemes.Comment: 5 pages, 3 figures, plus supplementary material (6 pages, 1 figure

    Robust quantum correlations in out-of-equilibrium matter-light systems

    Full text link
    High precision macroscopic quantum control in interacting light-matter systems remains a significant goal toward novel information processing and ultra-precise metrology. We show that the out-of-equilibrium behavior of a paradigmatic light-matter system (Dicke model) reveals two successive stages of enhanced quantum correlations beyond the traditional schemes of near-adiabatic and sudden quenches. The first stage features magnification of matter-only and light-only entanglement and squeezing due to effective non-linear self-interactions. The second stage results from a highly entangled light-matter state, with enhanced superradiance and signatures of chaotic and highly quantum states. We show that these new effects scale up consistently with matter system size, and are reliable even in dissipative environments.Comment: 14 pages, 6 figure

    Large dynamic light-matter entanglement from driving neither too fast nor too slow

    Full text link
    A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a new regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at \emph{intermediate} velocities. This enhancement is far larger and broader-ranged than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.Comment: 7 pages, 7 figure

    Quantum Hysteresis in Coupled Light-Matter Systems

    Full text link
    We investigate the non-equilibrium quantum dynamics of a canonical light-matter system, namely the Dicke model, when the light-matter interaction is ramped up and down through a cycle across the quantum phase transition. Our calculations reveal a rich set of dynamical behaviors determined by the cycle times, ranging from the slow, near adiabatic regime through to the fast, sudden quench regime. As the cycle time decreases, we uncover a crossover from an oscillatory exchange of quantum information between light and matter that approaches a reversible adiabatic process, to a dispersive regime that generates large values of light-matter entanglement. The phenomena uncovered in this work have implications in quantum control, quantum interferometry, as well as in quantum information theory.Comment: 9 pages and 4 figure

    Functional advantages offered by many-body coherences in biochemical systems

    Full text link
    Quantum coherence phenomena driven by electronic-vibrational (vibronic) interactions, are being reported in many pulse (e.g. laser) driven chemical and biophysical systems. But what systems-level advantage(s) do such many-body coherences offer to future technologies? We address this question for pulsed systems of general size N, akin to the LHCII aggregates found in green plants. We show that external pulses generate vibronic states containing particular multipartite entanglements, and that such collective vibronic states increase the excitonic transfer efficiency. The strength of these many-body coherences and their robustness to decoherence, increase with aggregate size N and do not require strong electronic-vibrational coupling. The implications for energy and information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776

    Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems

    Get PDF
    We show that a pulsed stimulus can be used to generate many-body quantum coherences in light-matter systems of general size. Specifically, we calculate the exact real-time evolution of a driven, generic out-of-equilibrium system comprising an arbitrary number N qubits coupled to a global boson field. A novel form of dynamically-driven quantum coherence emerges for general N and without having to access the empirically challenging strong-coupling regime. Its properties depend on the speed of the changes in the stimulus. Non-classicalities arise within each subsystem that have eluded previous analyses. Our findings show robustness to losses and noise, and have potential functional implications at the systems level for a variety of nanosystems, including collections of N atoms, molecules, spins, or superconducting qubits in cavities -- and possibly even vibration-enhanced light harvesting processes in macromolecules.Comment: 9 pages, 4 figure

    Dynamics of Entanglement and the Schmidt Gap in a Driven Light-Matter System

    Full text link
    The ability to modify light-matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light-matter systems. Here we study the impact of such a pulsed coupling on the light-matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes -- from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems.Comment: 15 pages, 4 figures, Accepted for publication in Journal of Physics B, special issue Correlations in light-matter interaction

    Exploring LGBT resilience and moving beyond a deficit-model: findings from a qualitative study in England

    Get PDF
    The aim of this study is to critique and extend psychological approaches to resilience by examining retrospective accounts of LGBT people in England who had directly experienced or witnessed events that were salient as significantly negative or traumatic. Pre-screening telephone interviews identified ten individuals who matched inclusion criteria (mean age: 39 years; range 26–62 years) as part of a larger study. Interviews were semi-structured and informed by a literature review undertaken at the start of the study. We identified three themes of that extend the resilience literature for LGBTQ+ people: (1) identifying and foregrounding inherent personal traits – how non-contextual inborn qualities or attributes needed external effort to be recognised and operationalised; (2) describing asymmetric sources of social support and acceptance – the importance of positive environment is unequally available to LGBT people compared to heterosexuals, and uneven within the LGBT group; and (3) blurring distinctions between resilience and coping – experiential approaches to moving beyond distress. We suggest that narratives of resilience in the accounts of LGBT people can inform the development of resilience promotion models for minoritized individuals and support movement away from deficit-focused approaches to health policy

    Bilingual Counseling Competencies: A Call to the Counseling Profession

    Get PDF
    The Latine population in the United States is increasing, leading to a higher need for bilingual counseling services. Therefore, counselor educators and supervisors must ensure bilingual counselors receive proper ethnocultural and linguistic competence training. This article aims to highlight the significance of bilingual counseling competencies in counselor education, emphasize the importance of linguistic training in cultural competence training, and propose a set of linguistic and ethnocultural competencies to help establish a proficient bilingual counselor. Additionally, future recommendations are discussed

    The City: Art and the Urban Environment

    Full text link
    The City: Art and the Urban Environment is the fifth annual exhibition curated by students enrolled in the Art History Methods class. This exhibition draws on the students’ newly developed expertise in art-historical methodologies and provides an opportunity for sustained research and an engaged curatorial experience. Working with a selection of paintings, prints, and photographs, students Angelique Acevedo ’19, Sidney Caccioppoli ’21, Abigail Coakley ’20, Chris Condon ’18, Alyssa DiMaria ’19, Carolyn Hauk ’21, Lucas Kiesel ’20, Noa Leibson ’20, Erin O’Brien ’19, Elise Quick ’21, Sara Rinehart ’19, and Emily Roush ’21 carefully consider depictions of the urban environment in relation to significant social, economic, artistic, and aesthetic developments. [excerpt]https://cupola.gettysburg.edu/artcatalogs/1029/thumbnail.jp
    • …
    corecore