199 research outputs found
Radial or bilateral? The molecular basis of floral symmetry.
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants
Alien Registration- Ciccanelli, Maria (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/25580/thumbnail.jp
Alien Registration- Ciccanelli, Maria (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/25580/thumbnail.jp
Recursive Least Squares Filtering Algorithms for On-Line Viscoelastic Characterization of Biosamples
The mechanical characterization of biological samples is a fundamental issue in biology
and related fields, such as tissue and cell mechanics, regenerative medicine and diagnosis of diseases.
In this paper, a novel approach for the identification of the stiffness and damping coefficients
of biosamples is introduced. According to the proposed method, a MEMS-based microgripper
in operational condition is used as a measurement tool. The mechanical model describing the
dynamics of the gripper-sample system considers the pseudo-rigid body model for the microgripper,
and the Kelvin–Voigt constitutive law of viscoelasticity for the sample. Then, two algorithms based
on recursive least square (RLS) methods are implemented for the estimation of the mechanical
coefficients, that are the forgetting factor based RLS and the normalised gradient based RLS
algorithms. Numerical simulations are performed to verify the effectiveness of the proposed approach.
Results confirm the feasibility of the method that enables the ability to perform simultaneously two
tasks: sample manipulation and parameters identification
Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution
DNA methylation is an epigenetic modification of the genome involved in the regulation of gene expression and modulation of chromatin structure. Plant genomes are widely methylated, and the methylation generally occurs on the cytosine bases through the activity of specific enzymes called DNA methyltransferases. On the other hand, methylated DNA can also undergo demethylation through the action of demethylases. The methylation landscape is finely tuned and assumes a pivotal role in plant development and evolution. This review illustrates different molecular aspects of DNA methylation and some plant physiological processes influenced by this epigenetic modification in model species, crops, and ornamental plants such as orchids. In addition, this review aims to describe the relationship between the changes in plant DNA methylation levels and the response to biotic and abiotic stress. Finally, we discuss the possible evolutionary implications and biotechnological applications of DNA methylation
Orchid NAC Transcription Factors: A Focused Analysis of CUPULIFORMIS Genes
Plant transcription factors are involved in different developmental pathways. NAC transcription factors (No Apical Meristem, Arabidopsis thaliana Activating Factor, Cup-shaped Cotyledon) act in various processes, e.g., plant organ formation, response to stress, and defense mechanisms. In Antirrhinum majus, the NAC transcription factor CUPULIFORMIS (CUP) plays a role in determining organ boundaries and lip formation, and the CUP homologs of Arabidopsis and Petunia are involved in flower organ formation. Orchidaceae is one of the most species-rich families of angiosperms, known for its extraordinary diversification of flower morphology. We conducted a transcriptome and genome-wide analysis of orchid NACs, focusing on the No Apical Meristem (NAM) subfamily and CUP genes. To check whether the CUP homologs could be involved in the perianth formation of orchids, we performed an expression analysis on the flower organs of the orchid Phalaenopsis aphrodite at different developmental stages. The expression patterns of the CUP genes of P. aphrodite suggest their possible role in flower development and symmetry establishment.
In addition, as observed in other species, the orchid CUP1 and CUP2 genes seem to be regulated by the microRNA, miR164. Our results represent a preliminary study of NAC transcription factors in orchids to understand the role of these genes during orchid flower formation
Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer
Progress in detection and treatment have drastically improved survival for early breast cancer patients. However, distant recurrence causes high mortality and is typically considered incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic recurrence often occurs years to decades after treatment. During clinical latency, disseminated tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely shielded from immune detection and treatment. While this is a challenge, it can also be seen as an outstanding opportunity to target dormant DTCs on time, before their transformation into lethal macrometastatic lesions. Here, we review and discuss progress made in our understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic insights of these features has led to the identification of possible targeting strategies, yet, their integration into clinical trial design is still uncertain. Incorporating minimally invasive liquid biopsies and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells, may help to address current challenges and improve precision cancer care
Transcriptome-wide identification and expression analysis of DIVARICATA- and RADIALIS-like genes of the Mediterranean orchid Orchis italica.
Bilateral symmetry of flowers is a relevant novelty that has occurred many times throughout the evolution of flowering plants. In Antirrhinum majus, establishment of flower dorso-ventral asymmetry is mainly due to interaction of TCP (CYC and DICH) and MYB (DIV, RAD and DRIF) transcription factors. In the present study, we characterized 8 DIV-, 4 RAD- and 2 DRIF-like genes from the transcriptome of Orchis italica, an orchid species with bilaterally symmetric and resupinate flowers. We found a similar number of DIV- and RAD-like genes within the genomes of Phalaenopsis equestris and Dendrobium catenatum orchids. Orchid DIV- and RAD-like proteins share conserved motifs whose distribution reflects their phylogeny and analysis of the genomic organization revealed a single intron containing many traces of transposable elements. Evolutionary analysis has shown that purifying selection acts on the DIV- and RAD-like coding regions in orchids, with relaxation of selective constraints in a branch of the DIV-like genes. Analysis of the expression patterns of DIV- and RAD-like genes in O. italica revealed possible redundant functions for some of them. In the perianth of O. italica, the ortholog of DIV and DRIF of A. majus are expressed in all tissues, whereas RAD is mainly expressed in the outer tepals and lip. These data allow for proposal of an evolutionary conserved model in which the expression of the orthologs of the DIV, RAD and DRIF genes might be related to establishment of flower bilateral symmetry in the non-model orchid species O. italica
ISSR markers show differentiation among Italian populations of Asparagus acutifolius L
BACKGROUND: Asparagus acutifolius L. is a dioecious and native plant species, widely distributed in the Mediterranean Basin. It is known for its fine flavour and could represent an important resource for cultivation programs in desert areas. Few molecular studies have been performed on this species. In the present paper, the ISSR technique was employed to study genetic diversity in Italian A. acutifolius. RESULTS: Twenty-three primers produced a total of 228 polymorphic fragments used to evaluate genetic variation. F(ST )(0.4561) and Theta B (0.4776) values indicate a wide genetic variation among the samples examined. The distance UPGMA tree grouped together the genotypes strictly according to their geographical origin, showing that each sample is genetically structured and can be considered a distinct population. AMOVA analysis further confirmed genetic structuring of the populations. Population-specific fragments were also detected. CONCLUSION: The results suggest that ISSR markers are useful in distinguishing the populations of A. acutifolius according to geographical origin, and confirm the importance of genetic studies for designing germplasm conservation strategies
The Use of UV-Visible Diffuse Reflectance Spectrophotometry for a Fast, Preliminary Authentication of Gemstones
The identification of gemstones is an important topic in the field of cultural heritage, given their enormous value. Particularly, the most important precious stones, namely diamond, emerald, ruby and sapphire, are frequently subjected to counterfeit by substitution with objects of lesser value with similar appearance, colour or shape. While a gemmologist is able to recognise a counterfeit in most instances, more generally, it is not easy to do this without resorting to instrumental methods. In this work, the use of UV-visible diffuse reflectance spectrophotometry with optic fibres (FORS) is proposed as a fast and easy method for the preliminary identification of gemstones, alternative to the classical methods used by gemmologists or to Raman spectroscopy, which is by far the instrumental method with the best diagnostic potential, but it cannot be used in situations of problematic geometric hindrance. The possibilities and the limitations given by the FORS technique are critically discussed together with the spectral features of the most important gemstones. Finally, the application of chemometric pattern recognition methods is described for the treatment of large sets of spectral data deriving from gemstones identification
- …