2,459 research outputs found
IIR Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries
In this paper we propose a new strategy for gravitational waves detection
from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This
strategy is a classical hierarchical strategy in which the ALE filters have the
role of triggers, used to select data chunks which may contain gravitational
events, to be further analyzed with more refined optimal techniques, like the
the classical Matched Filter Technique. After a direct comparison of the
performances of ALE filters with the Wiener-Komolgoroff optimum filters
(matched filters), necessary to discuss their performance and to evaluate the
statistical limitation in their use as triggers, we performed a series of
tests, demonstrating that these filters are quite promising both for the
relatively small computational power needed and for the robustness of the
algorithms used. The performed tests have shown a weak point of ALE filters,
that we fixed by introducing a further strategy, based on a dynamic bank of ALE
filters, running simultaneously, but started after fixed delay times. The
results of this global trigger strategy seems to be very promising, and can be
already used in the present interferometers, since it has the great advantage
of requiring a quite small computational power and can easily run in real-time,
in parallel with other data analysis algorithms.Comment: Accepted at SPIE: "Astronomical Telescopes and Instrumentation". 9
pages, 3 figure
A chi-squared time-frequency discriminator for gravitational wave detection
Searches for known waveforms in gravitational wave detector data are often
done using matched filtering. When used on real instrumental data, matched
filtering often does not perform as well as might be expected, because
non-stationary and non-Gaussian detector noise produces large spurious filter
outputs (events). This paper describes a chi-squared time-frequency test which
is one way to discriminate such spurious events from the events that would be
produced by genuine signals. The method works well only for broad-band signals.
The case where the filter template does not exactly match the signal waveform
is also considered, and upper bounds are found for the expected value of
chi-squared.Comment: 18 pages, five figures, RevTex
Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2
In August 2017, advanced Virgo joined advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications; this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction algorithm. A photon calibrator has been used to establish the sign of h(t) and to make an independent partial cross-check of the systematic uncertainties. The uncertainties reached for the latest h(t) version are 5.1% in amplitude, 40 mrad in phase and 20 ÎĽs in timing
Identification of long-duration noise transients in LIGO and Virgo
The LIGO and Virgo detectors are sensitive to a variety of noise sources,
such as instrumental artifacts and environmental disturbances. The Stochastic
Transient Analysis Multi-detector Pipeline (STAMP) has been developed to search
for long-duration (t1s) gravitational-wave (GW) signals. This pipeline
can also be used to identify environmental noise transients. Here we present an
algorithm to determine when long-duration noise sources couple into the
interferometers, as well as identify what these noise sources are. We analyze
the cross-power between a GW strain channel and an environmental sensor, using
pattern recognition tools to identify statistically significant structure in
cross-power time-frequency maps. We identify interferometer noise from
airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's
sixth science run, S6, and Virgo's third scientific run, VSR3, are presented.Comment: 10 pages, 7 figures, Gravitational-wave Physics & Astronomy Worksho
A new numerical method to construct binary neutron star initial data
We present a new numerical method for the generation of binary neutron star
initial data using a method along the lines of the the Wilson-Mathews or the
closely related conformal thin sandwich approach. Our method uses six different
computational domains, which include spatial infinity. Each domain has its own
coordinates which are chosen such that the star surfaces always coincide with
domain boundaries. These properties facilitate the imposition of boundary
conditions. Since all our fields are smooth inside each domain, we are able to
use an efficient pseudospectral method to solve the elliptic equations
associated with the conformal thin sandwich approach. Currently we have
implemented corotating configurations with arbitrary mass ratios, but an
extension to arbitrary spins is possible. The main purpose of this paper is to
introduce our new method and to test our code for several different
configurations.Comment: 18 pages, 8 figures, 1 tabl
Performance of the WaveBurst algorithm on LIGO data
In this paper we describe the performance of the WaveBurst algorithm which
was designed for detection of gravitational wave bursts in interferometric
data. The performance of the algorithm was evaluated on the test data set
collected during the second LIGO Scientific run. We have measured the false
alarm rate of the algorithm as a function of the threshold and estimated its
detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure
Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4 - 3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h(0)(95%). The strictest constraint is h(0)(95%) = 4.7 x 10(-26) from IGR J17062 - 6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are epsilon(95%) = 3.1 x 10(-7) and alpha(95%) = 1.8 x 10(-5) respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date
Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2
In August 2017, advanced Virgo joined advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications; this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction algorithm. A photon calibrator has been used to establish the sign of h(t) and to make an independent partial cross-check of the systematic uncertainties. The uncertainties reached for the latest h(t) version are 5.1% in amplitude, 40 mrad in phase and 20 ÎĽs in timing
The upgrade of GEO600
The German / British gravitational wave detector GEO 600 is in the process of
being upgraded. The upgrading process of GEO 600, called GEO-HF, will
concentrate on the improvement of the sensitivity for high frequency signals
and the demonstration of advanced technologies. In the years 2009 to 2011 the
detector will undergo a series of upgrade steps, which are described in this
paper.Comment: 9 pages, Amaldi 8 conference contributio
- …