90 research outputs found

    Genetic Variants in <i>CPA6</i> and <i>PRPF31</i> are Associated with Variation in Response to Metformin in Individuals with Type 2 Diabetes

    Get PDF
    Metformin is the first-line treatment for type 2 diabetes (T2D). Although widely prescribed, the glucose-lowering mechanism for metformin is incompletely understood. Here, we used a genome-wide association approach in a diverse group of individuals with T2D from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial to identify common and rare variants associated with HbA1c response to metformin treatment and followed up these findings in four replication cohorts. Common variants in PRPF31 and CPA6 were associated with worse and better metformin response, respectively (P &lt; 5 × 10-6), and meta-analysis in independent cohorts displayed similar associations with metformin response (P = 1.2 × 10-8 and P = 0.005, respectively). Previous studies have shown that PRPF31(+/-) knockout mice have increased total body fat (P = 1.78 × 10-6) and increased fasted circulating glucose (P = 5.73 × 10-6). Furthermore, rare variants in STAT3 associated with worse metformin response (q &lt;0.1). STAT3 is a ubiquitously expressed pleiotropic transcriptional activator that participates in the regulation of metabolism and feeding behavior. Here, we provide novel evidence for associations of common and rare variants in PRPF31, CPA6, and STAT3 with metformin response that may provide insight into mechanisms important for metformin efficacy in T2D

    Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes

    Get PDF
    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 x 10(-6)). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D

    Genetic Variants in \u3cem\u3eHSD17B3\u3c/em\u3e, \u3cem\u3eSMAD3\u3c/em\u3e, and \u3cem\u3eIPO11\u3c/em\u3e Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes

    Get PDF
    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin‐treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed‐up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P \u3c 5 × 10‐6). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q \u3c 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q \u3c 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor‐beta (TGF‐ÎČ) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D

    An epistemic community comes and goes? Local and national expressions of heart health promotion in Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study is to examine the existence and shape of epistemic communities for (heart) health promotion at the international, national, provincial and regional levels in Canada. Epistemic community may be defined as a network of experts with an authoritative claim to policy relevant knowledge in their area of expertise.</p> <p>Methods</p> <p>An interpretive policy analysis was employed using 60 documents (48 provincial, 8 national and 4 international) and 66 interviews (from 5 Canadian provinces). These data were entered into NUD*IST, a qualitative software analysis package, to assist in the development of codes and themes. These codes form the basis of the results.</p> <p>Results</p> <p>A scientific and policy epistemic community was identified at the international and Canadian federal levels. Provincially and regionally, the community is present as an idea but its implementation varies between jurisdictions.</p> <p>Conclusion</p> <p>The importance of economic, political and cultural factors shapes the presence and shape of the epistemic community in different jurisdictions. The community waxes and wanes but appears robust.</p

    Cardiovasc Diabetol

    Get PDF
    Lower-extremity arterial disease (LEAD) is a major endemic disease with an alarming increased prevalence worldwide. It is a common and severe condition with excess risk of major cardiovascular events and death. It also leads to a high rate of lower-limb adverse events and non-traumatic amputation. The American Diabetes Association recommends a widespread medical history and clinical examination to screen for LEAD. The ankle brachial index (ABI) is the first non-invasive tool recommended to diagnose LEAD although its variable performance in patients with diabetes. The performance of ABI is particularly affected by the presence of peripheral neuropathy, medial arterial calcification, and incompressible arteries. There is no strong evidence today to support an alternative test for LEAD diagnosis in these conditions. The management of LEAD requires a strict control of cardiovascular risk factors including diabetes, hypertension, and dyslipidaemia. The benefit of intensive versus standard glucose control on the risk of LEAD has not been clearly established. Antihypertensive, lipid-lowering, and antiplatelet agents are obviously worthfull to reduce major cardiovascular adverse events, but few randomised controlled trials (RCTs) have evaluated the benefits of these treatments in terms of LEAD and its related adverse events. Smoking cessation, physical activity, supervised walking rehabilitation and healthy diet are also crucial in LEAD management. Several advances have been achieved in endovascular and surgical revascularization procedures, with obvious improvement in LEAD management. The revascularization strategy should take into account several factors including anatomical localizations of lesions, medical history of each patients and operator experience. Further studies, especially RCTs, are needed to evaluate the interest of different therapeutic strategies on the occurrence and progression of LEAD and its related adverse events in patients with diabetes
    • 

    corecore