10 research outputs found

    Widespread Epigenetic Abnormalities Suggest a Broad DNA Methylation Erasure Defect in Abnormal Human Sperm

    Get PDF
    Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (= 65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control.Methods In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5 degrees by 5 degrees grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628.Findings We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0.3 months [95% CI -0.3 to 0.9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3.8 months [3.6 to 4.0]) in temperate sites and longer duration (5.2 months [4.9 to 5.5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4.6 months [4.3 to 4.8]), as it was for metapneumovirus (4.8 months [4.4 to 5.1]). By comparison, parainfluenza virus had longer duration of epidemics (6.3 months [6.0 to 6.7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus -0.2 months [-0.6 to 0.1]; respiratory syncytial virus 0.1 months [-0.2 to 0.4]).Interpretation This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd

    Detection of Streptococcus pneumoniae and Haemophilus influenzae Type B by Real-Time PCR from Dried Blood Spot Samples among Children with Pneumonia: A Useful Approach for Developing Countries

    Get PDF
    BACKGROUND: Dried blood spot (DBS) is a reliable blood collection method for storing samples at room temperature and easily transporting them. We have previously validated a Real-Time PCR for detection of Streptococcus pneumoniae in DBS. The objective of this study was to apply this methodology for the diagnosis of S. pneumoniae and Haemophilus influenzae b (Hib) in DBS samples of children with pneumonia admitted to two hospitals in Mozambique and Morocco. METHODS: Ply and wzg genes of S. pneumoniae and bexA gene of Hib, were used as targets of Real-Time PCR. 329 DBS samples of children hospitalized with clinical diagnosis of pneumonia were tested. RESULTS: Real-Time PCR in DBS allowed for a significant increase in microbiological diagnosis of S. pneumoniae and Hib. When performing blood bacterial culture, only ten isolates of S. pneumoniae and none of Hib were detected (3路0% positivity rate, IC95% 1路4-5路5%). Real-Time PCR from DBS samples increased the detection yield by 4x fold, as 30 S. pneumoniae and 11 Hib cases were detected (12路4% positivity rate, IC95% 9路0-16路5%; P<0路001). CONCLUSION: Real-Time PCR applied in DBS may be a valuable tool for improving diagnosis and surveillance of pneumonia caused by S. pneumoniae or Hib in developing countries

    Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study.

    No full text
    BACKGROUND: We have previously estimated that respiratory syncytial virus (RSV) was associated with 22% of all episodes of (severe) acute lower respiratory infection (ALRI) resulting in 55 000 to 199 000 deaths in children younger than 5 years in 2005. In the past 5 years, major research activity on RSV has yielded substantial new data from developing countries. With a considerably expanded dataset from a large international collaboration, we aimed to estimate the global incidence, hospital admission rate, and mortality from RSV-ALRI episodes in young children in 2015. METHODS: We estimated the incidence and hospital admission rate of RSV-associated ALRI (RSV-ALRI) in children younger than 5 years stratified by age and World Bank income regions from a systematic review of studies published between Jan 1, 1995, and Dec 31, 2016, and unpublished data from 76 high quality population-based studies. We estimated the RSV-ALRI incidence for 132 developing countries using a risk factor-based model and 2015 population estimates. We estimated the in-hospital RSV-ALRI mortality by combining in-hospital case fatality ratios with hospital admission estimates from hospital-based (published and unpublished) studies. We also estimated overall RSV-ALRI mortality by identifying studies reporting monthly data for ALRI mortality in the community and RSV activity. FINDINGS: We estimated that globally in 2015, 33路1 million (uncertainty range [UR] 21路6-50路3) episodes of RSV-ALRI, resulted in about 3路2 million (2路7-3路8) hospital admissions, and 59 600 (48 000-74 500) in-hospital deaths in children younger than 5 years. In children younger than 6 months, 1路4 million (UR 1路2-1路7) hospital admissions, and 27 300 (UR 20 700-36 200) in-hospital deaths were due to RSV-ALRI. We also estimated that the overall RSV-ALRI mortality could be as high as 118 200 (UR 94 600-149 400). Incidence and mortality varied substantially from year to year in any given population. INTERPRETATION: Globally, RSV is a common cause of childhood ALRI and a major cause of hospital admissions in young children, resulting in a substantial burden on health-care services. About 45% of hospital admissions and in-hospital deaths due to RSV-ALRI occur in children younger than 6 months. An effective maternal RSV vaccine or monoclonal antibody could have a substantial effect on disease burden in this age group. FUNDING: The Bill &amp; Melinda Gates Foundation
    corecore