7 research outputs found

    Fabrication of Mesoporous V<sub>2</sub>O<sub>5</sub>@g-C<sub>3</sub>N<sub>4</sub> Nanocomposite as Photocatalyst for Dye Degradation

    No full text
    This study investigated the photocatalytic degradation of RB dye by V2O5@g-C3N4 nano-catalysts. The sonication method was utilized to create V2O5@g-C3N4 nano-catalysts. V2O5@g-C3N4 nano-catalysts were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), high-resolution electron microscopy (TEM), BET-surface area analyzer, X-ray photoelectron spectroscopy (XPS), and ultraviolet spectroscopy. In the meantime, the photocatalytic activity, pH, and photocatalyst dosage are investigated in depth to account for RB dye decolorization. The rate constant for RB dye photodegradation was 0.0517 (min−1) and the decolorization rate was 93.4%. The degrading efficiency of RB dye by V2O5@g-C3N4 nanocatalysts is consistent with pseudo-first-order kinetics. The results of this study demonstrated that V2O5@g-C3N4 nanocatalysts are particularly effective at destroying dyes in water

    Dependency of Crystal Violet Dye Removal Behaviors onto Mesoporous V<sub>2</sub>O<sub>5</sub>-g-C<sub>3</sub>N<sub>4</sub> Constructed by Simplistic Ultrasonic Method

    No full text
    This research examined the production of a V2O5-g-C3N4 nanocomposite to remove organic dyes from wastewater. To generate the V2O5-g-C3N4 nanocomposite, the sonication method was applied. The testing of V2O5-g-C3N4 with various dyes (basic fuchsin (BF), malachite green (MG), crystal violet (CV), Congo red (CR), and methyl orange (MO)) revealed that the nanocomposite has a high adsorption ability towards BF, MG, CV, and CR dyes in comparison with MO dye. It was established that the modification of pH influenced the removal of CV by the V2O5-g-C3N4 nanocomposite and that under optimal operating conditions, efficiency of 664.65 mg g−1 could be attained. The best models for CV adsorption onto the V2O5-g-C3N4 nanocomposite were found to be those based on pseudo-second-order adsorption kinetics and the Langmuir isotherm. According to the FTIR analysis results, the CV adsorption mechanism was connected to π–π interactions and the hydrogen bond

    Fabrication of Mesoporous V2O5@g-C3N4 Nanocomposite as Photocatalyst for Dye Degradation

    No full text
    This study investigated the photocatalytic degradation of RB dye by V2O5@g-C3N4 nano-catalysts. The sonication method was utilized to create V2O5@g-C3N4 nano-catalysts. V2O5@g-C3N4 nano-catalysts were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), high-resolution electron microscopy (TEM), BET-surface area analyzer, X-ray photoelectron spectroscopy (XPS), and ultraviolet spectroscopy. In the meantime, the photocatalytic activity, pH, and photocatalyst dosage are investigated in depth to account for RB dye decolorization. The rate constant for RB dye photodegradation was 0.0517 (min&minus;1) and the decolorization rate was 93.4%. The degrading efficiency of RB dye by V2O5@g-C3N4 nanocatalysts is consistent with pseudo-first-order kinetics. The results of this study demonstrated that V2O5@g-C3N4 nanocatalysts are particularly effective at destroying dyes in water

    Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism

    No full text
    This report investigates the elimination of hazardous Rhodamine B dye (RhB) from an aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids manufactured using a facile method. The nanohybrid MgTiO3@g-C3N4 was generated using an ultrasonic approach in the alcoholic solvent. Various techniques, including HRTEM, EDX, XRD, BET, and FTIR, were employed to describe the fabricated MgTiO3@g-C3N4 nanohybrids. RhB elimination was investigated utilizing batch mode studies, and the maximum removal was attained at pH 7.0. The RhB adsorption process is more consistent with the Langmuir isotherm model. The highest adsorption capacity of MgTiO3@g-C3N4 nanohybrids for RhB was determined to be 232 mg/g. The dye adsorption followed a pseudo-second-order model, and the parameters calculated indicated that the kinetic adsorption process was spontaneous. Using ethanol and water, the reusability of the nanomaterial was investigated, and based on the results; it can be concluded that the MgTiO3@g-C3N4 nanohybrids are easily regenerated for dye removal. The removal mechanism for the removal of RhB dye into MgTiO3@g-C3N4 nanohybrids was also investigated

    Excellent Adsorption of Dyes via MgTiO<sub>3</sub>@g-C<sub>3</sub>N<sub>4</sub> Nanohybrid: Construction, Description and Adsorption Mechanism

    No full text
    This report investigates the elimination of hazardous Rhodamine B dye (RhB) from an aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids manufactured using a facile method. The nanohybrid MgTiO3@g-C3N4 was generated using an ultrasonic approach in the alcoholic solvent. Various techniques, including HRTEM, EDX, XRD, BET, and FTIR, were employed to describe the fabricated MgTiO3@g-C3N4 nanohybrids. RhB elimination was investigated utilizing batch mode studies, and the maximum removal was attained at pH 7.0. The RhB adsorption process is more consistent with the Langmuir isotherm model. The highest adsorption capacity of MgTiO3@g-C3N4 nanohybrids for RhB was determined to be 232 mg/g. The dye adsorption followed a pseudo-second-order model, and the parameters calculated indicated that the kinetic adsorption process was spontaneous. Using ethanol and water, the reusability of the nanomaterial was investigated, and based on the results; it can be concluded that the MgTiO3@g-C3N4 nanohybrids are easily regenerated for dye removal. The removal mechanism for the removal of RhB dye into MgTiO3@g-C3N4 nanohybrids was also investigated

    Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity

    No full text
    A novel series of benzimidazole ureas 3a–h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a–h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a–h were evaluated. Almost all compounds 3a–h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a–h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action

    Synthesis, optical properties, DNA, β-cyclodextrin interaction, hydrogen isotope sensor and computational study of new enantiopure isoxazolidine derivative (ISoXD)

    No full text
    A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and β-cyclodextrin (β-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD.Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and β-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and β-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (−6.511) and MM-GBSA binding free energies (−66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development
    corecore