2 research outputs found

    The Evolution and Reliability of Machine Learning Techniques for Oncology

    No full text
    It is no secret that the rise of the Internet and other digital technologies has sparked renewed interest in AI-based techniques, especially those that fall under the umbrella of the subset of algorithms known as "Machine Learning" (ML). These advancements in electronics have allowed us to comprehend the world beyond the bounds of human cognition. A high-dimensional dataset's complicated nature. Although these techniques have been regularly employed by the medical sciences, their adoption to enhance patient care has been a bit slow. The availability of curated diverse data sets for model development is all examples of the substantial hurdles that have delayed these efforts. The future clinical acceptance of each of these characteristics may be affected by a number of limiting conditions, such as the time and resources spent on data collection and model development, the cost of integration relative to the time and resources spent on translation, and the potential for patient damage. In order to preserve value and enhance medical care, the goal of this article is to evaluate all facets of the issue in light of the validity of using ML methods in cancer, to serve as a template for further research and the subfield of oncology that serves as a model for other parts of the discipline

    The performance of artificial intelligence in prostate magnetic resonance imaging screening

    Get PDF
    Prostate cancer is the predominant form of cancer observed in men worldwide. The application of magnetic resonance imaging (MRI) as a guidance tool for conducting biopsies has been established as a reliable and well-established approach in the diagnosis of prostate cancer. The diagnostic performance of MRI-guided prostate cancer diagnosis exhibits significant heterogeneity due to the intricate and multi-step nature of the diagnostic pathway. The development of artificial intelligence (AI) models, specifically through the utilization of machine learning techniques such as deep learning, is assuming an increasingly significant role in the field of radiology. In the realm of prostate MRI, a considerable body of literature has been dedicated to the development of various AI algorithms. These algorithms have been specifically designed for tasks such as prostate segmentation, lesion identification, and classification. The overarching objective of these endeavors is to enhance diagnostic performance and foster greater agreement among different observers within MRI scans for the prostate. This review article aims to provide a concise overview of the application of AI in the field of radiology, with a specific focus on its utilization in prostate MRI
    corecore