598 research outputs found

    Phenomenological model for symmetry breaking in chaotic system

    Full text link
    We assume that the energy spectrum of a chaotic system undergoing symmetry breaking transitions can be represented as a superposition of independent level sequences, one increasing on the expense of the others. The relation between the fractional level densities of the sequences and the symmetry breaking interaction is deduced by comparing the asymptotic expression of the level-number variance with the corresponding expression obtained using the perturbation theory. This relation is supported by a comparison with previous numerical calculations. The predictions of the model for the nearest-neighbor-spacing distribution and the spectral rigidity are in agreement with the results of an acoustic resonance experiment.Comment: accepted for publication in Physical Review

    Effect of Unfolding on the Spectral Statistics of Adjacency Matrices of Complex Networks

    Get PDF
    Random matrix theory is finding an increasing number of applications in the context of information theory and communication systems, especially in studying the properties of complex networks. Such properties include short-term and long-term correlation. We study the spectral fluctuations of the adjacency of networks using random-matrix theory. We consider the influence of the spectral unfolding, which is a necessary procedure to remove the secular properties of the spectrum, on different spectral statistics. We find that, while the spacing distribution of the eigenvalues shows little sensitivity to the unfolding method used, the spectral rigidity has greater sensitivity to unfolding.Comment: Complex Adaptive Systems Conference 201

    The effect of nuclear deformation on level statistics

    Full text link
    We analyze the nearest neighbor spacing distributions of low-lying 2+ levels of even-even nuclei. We grouped the nuclei into classes defined by the quadrupole deformation parameter (Beta2). We calculate the nearest neighbor spacing distributions for each class. Then, we determine the chaoticity parameter for each class with the help of the Bayesian inference method. We compare these distributions to a formula that describes the transition to chaos by varying a tuning parameter. This parameter appears to depend in a non-trivial way on the nuclear deformation, and takes small values indicating regularity in strongly deformed nuclei and especially in those having an oblate deformation.Comment: 10 Pages, 6 figure
    • …
    corecore