13 research outputs found

    Effect of Unfolding on the Spectral Statistics of Adjacency Matrices of Complex Networks

    Get PDF
    Random matrix theory is finding an increasing number of applications in the context of information theory and communication systems, especially in studying the properties of complex networks. Such properties include short-term and long-term correlation. We study the spectral fluctuations of the adjacency of networks using random-matrix theory. We consider the influence of the spectral unfolding, which is a necessary procedure to remove the secular properties of the spectrum, on different spectral statistics. We find that, while the spacing distribution of the eigenvalues shows little sensitivity to the unfolding method used, the spectral rigidity has greater sensitivity to unfolding.Comment: Complex Adaptive Systems Conference 201

    Connectivity Analysis of Directed Highway VANETs using Graph Theory

    Full text link
    Graph theory is a promising approach in handling the problem of estimating the connectivity probability of vehicular ad-hoc networks (VANETs). With a communication network represented as graph, graph connectivity indicators become valid for connectivity analysis of communication networks as well. In this article, we discuss two different graph-based methods for VANETs connectivity analysis showing that they capture the same behavior as estimated using probabilistic models. The study is, then, extended to include the case of directed VANETs, resulting from the utilization of different communication ranges by different vehicles. Overall, the graph-based methods prove a robust performance, as they can be simply diversified into scenarios that are too complex to acquire a rigid probabilistic model for them.Comment: 21 pages, 6 figure

    Empirical Study of Traffic Velocity Distribution and its Effect on VANETs Connectivity

    Full text link
    In this article we use real traffic data to confirm that vehicle velocities follow Gaussian distribution in steady state traffic regimes (free-flow, and congestion). We also show that in the transition between free-flow and congestion, the velocity distribution is better modeled by generalized extreme value distribution (GEV). We study the effect of the different models on estimating the probability distribution of connectivity duration between vehicles in vehicular ad-hoc networks.Comment: 5 pages, 5 figures, presented at the ICCVE 2014 (International conference on connected vehicles & expo); http://www.iccve.org
    corecore