4 research outputs found

    Binary and ternary metals adsorption from greywater using spent green tea as a novel adsorbent

    Get PDF
    Adsorption is one of the most easy-to-operate, less costly, efficient and, most importantly, environmentally friendly methods of removing toxic metals from aqueous environments. We used spent Impra Green Tea Ginseng Flavoured to recover mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in binary and ternary systems from greywater. We undertook this study in binary and ternary systems at adsorbent dosages with a corresponding 100 mL varied initial metal concentrations of the greywater. The adsorption efficiency at varied concentrations and dosages in the binary systems by the spent tea waste ranged from 38.5% to 100% for lead, 11.50% to 100% for cadmium and was 100% for mercury. In the ternary system, the adsorption efficiency of toxic metals ranged from 28.91% to 72.85% for cadmium and was 100% for mercury and lead. The maximum adsorption capacity (Qe) for toxic metals in the binary system ranged from 38.46 to 81.97 mg/g for Pb2+ and 12.64 to 56.82 mg/g for Cd2+. The Langmuir adsorption isotherm model was the best fit for the adsorption of toxic metals by Impra Green Tea Ginseng Flavoured. The pH under which the experiments were conducted showed very high removal efficiency for lead and mercury but lower removal efficiencies for cadmium. Spent Impra Green Tea Ginseng Flavoured can be used as an effective and low-cost adsorbent of toxic metals from greywater or wastewater. Based on our findings, further studies should be conducted to determine the effects of varying the contact time, temperature and elevated metal concentrations in the greywater or other wastewater. Significance: • This study provides useful information on how spent Impra Green Tea Ginseng Flavoured can be used as an effective and low-cost adsorbent of toxic metals from greywater or wastewater

    Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    No full text
    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended

    Mono and Simultaneous Adsorption of Aldrin and Toxic Metals from Aqueous Solution Using Rice Husk Biochar

    Get PDF
    Recent research has explored the potential of rice husk biochar as a low-cost adsorbent for the removal of contaminants from aqueous solutions, including aldrin, mercury (Hg2+), lead (Pb2+), and cadmium (Cd2+). Experimentation involved adding varying doses of biochar to wastewater with different contamination levels, agitating the mixture for 60 min, and filtering the solutions for analysis. The experiment revealed impressive removal efficiencies: 100% for aldrin, 99.92% - 99.99% for Hg2+, 95.90% - 99.52% for Pb2+, and 88.60% - 99.46% for Cd2+. In binary and quaternary mixtures, Hg2+ showed higher removal efficiency than Pb2+ and Cd2+, with the exception of aldrin. The adsorption order was identified as aldrin > Hg2+ > Pb2+ > Cd2+. The Freundlich adsorption isotherm best described heavy metals in the mono and quaternary component adsorption, while the Langmuir adsorption isotherm was a better fit for the binary component. Consequently, the study highlights rice husk biochar as an efficient, sustainable, and environmentally friendly option for wastewater treatment
    corecore