191 research outputs found
Recommended from our members
Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralising antibodies induced during human infection but not chicken colonisation
The cytolethal distending toxin (CDT) of Campylobacter jejuni was detectable, using an in vitro assay, in most but not all of 24 strains tested. The reason for the absence of toxin activity in these naturally occurring CDT-negative C. jejuni strains was then investigated at the genetic level. CDT is encoded by three highly conserved genes, cdtA, -B, and -C. In the CDT-negative strains, two types of mutation were identified. The CDT activities of C. jejuni strains possessing both types of mutation were successfully complemented with the functional genes of C. jejuni 11168. The first type of mutation comprised a 667-bp deletion across cdtA and cdtB and considerable degeneration in the remainder of the cdt locus. Using a PCR technique to screen for this deletion, this mutation occurred in fewer than 3% of 147 human, veterinary, and environmental strains tested. The second type of mutation involved at least four nonsynonymous nucleotide changes, but only the replacement of proline with serine at CdtB position 95 was considered important for CDT activity. This was confirmed by site-directed mutagenesis. This type of mutation also occurred in fewer than 3% of strains as determined using a LightCycler biprobe assay. The detection of two CDT-negative clinical isolates raised questions about the role of CDT in some cases of human campylobacteriosis. To determine if anti-CDT antibodies are produced in human infection, a toxin neutralization assay was developed and validated using rabbit antisera. Pooled human sera from infected patients neutralized the toxin, indicating expression and immunogenicity during infection. However, no neutralizing antibodies were detected in colonized chickens despite the expression of CDT in the avian gut as indicated by reverse transcription-PCR
Use of whole genome sequencing of commensal Escherichia coli in pigs for antimicrobial resistance surveillance, United Kingdom, 2018
BackgroundSurveillance of commensal Escherichia coli, a possible reservoir of antimicrobial resistance (AMR) genes, is important as they pose a risk to human and animal health. Most surveillance activities rely on phenotypic characterisation, but whole genome sequencing (WGS) presents an alternative.AimIn this retrospective study, we tested 515 E. coli isolated from pigs to evaluate the use of WGS to predict resistance phenotype.MethodsMinimum inhibitory concentration (MIC) was determined for nine antimicrobials of clinical and veterinary importance. Deviation from wild-type, fully-susceptible MIC was assessed using European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off (ECOFF) values. Presence of AMR genes and mutations were determined using APHA SeqFinder. Statistical two-by-two table analysis and Cohen's kappa (k) test were applied to assess genotype and phenotype concordance.ResultsOverall, correlation of WGS with susceptibility to the nine antimicrobials was 98.9% for test specificity, and 97.5% for the positive predictive value of a test. The overall kappa score (kβ=β0.914) indicated AMR gene presence was highly predictive of reduced susceptibility and showed excellent correlation with MIC. However, there was variation for each antimicrobial; five showed excellent correlation; four very good and one moderate. Suggested ECOFF adjustments increased concordance between genotypic data and kappa values for four antimicrobials.ConclusionWGS is a powerful tool for accurately predicting AMR that can be used for national surveillance purposes. Additionally, it can detect resistance genes from a wider panel of antimicrobials whose phenotypes are currently not monitored but may be of importance in the future
Novel Inducers of the Envelope Stress Response BaeSR in Salmonella Typhimurium: BaeR Is Critically Required for Tungstate Waste Disposal
The RpoE and CpxR regulated envelope stress responses are extremely important for SalmonellaTyphimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ityS or ityR mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water
Complete Sequence of pSAM7, an IncX4 Plasmid Carrying a Novel bla[sub]CTX-M-14b Transposition Unit Isolated from ' Escherichia coli ' and ' Enterobacter cloacae ' from cattle
The same plasmid carrying blaCTX-M-14b was identified from an Escherichia coli isolate and an Enterobacter cloacae isolate collected from cattle in the United Kingdom by complete plasmid sequencing. This 35,341-bp plasmid, pSAM7, had an IncX4 backbone that is 99% identical to that of pJIE143 from a human isolate in Australia. PCR screening identified pSAM7-like plasmids in three other E. coli isolates of different multilocus sequence types isolated from cattle on different farms in the United Kingdom
Recommended from our members
Determining antimicrobial susceptibility in Salmonella enterica serovar Typhimurium through whole genome sequencing: a comparison against multiple phenotypic susceptibility testing methods
Background : UK public health organisations perform routine antimicrobial susceptibility tests (ASTs) to characterise the potential for antimicrobial resistance in Salmonella enterica serovars. Genetic determinants of these resistance mechanisms are detectable by whole genome sequencing (WGS), however the viability of WGS-based genotyping as an alternative resistance screening tool remains uncertain. We compared WGS-based genotyping, disk diffusion and agar dilution to the broth microdilution reference AST for 102 Salmonella enterica serovar Typhimurium (S. Typhimurium) isolates across 11 antimicrobial compounds. Results : Genotyping concordance, interpreted using epidemiological cut-offs (ECOFFs), was 89.8% (1007/1122) with 0.83 sensitivity and 0.96 specificity. For seven antimicrobials interpreted using Salmonella clinical breakpoints, genotyping produced 0.84 sensitivity and 0.88 specificity. Although less accurate than disk diffusion (0.94 sensitivity, 0.93 specificity) and agar dilution (0.83 sensitivity, 0.98 specificity), genotyping performance improved to 0.89 sensitivity and 0.97 specificity when two antimicrobials with relatively high very major error rates were excluded (streptomycin and sulfamethoxazole). Conclusions : An 89.8% concordance from WGS-based AST predictions using ECOFF interpretations suggest that WGS would serve as an effective screening tool for the tracking of antimicrobial resistance mechanisms in S. Typhimurium. For use as a standalone clinical diagnostic screen, further work is required to reduce the error rates for specific antimicrobials
Recommended from our members
The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples
Shotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high- quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open- source software pipeline, βResPipeβ
Microevolution during the emergence of a monophasic Salmonella Typhimurium epidemic in the United Kingdom
Microevolutionary events associated with the emergence and clonal expansion of new 27 epidemic clones of bacterial pathogens hold the key to understanding the drivers of 28 epidemiological success. We describe a comparative whole genome sequence and 29 phylogenomic analysis of monophasic Salmonella Typhimurium isolates from the UK 30 and Italy from 2005-2012. Monophasic isolates from this time formed a single clade 31 distinct from recent monophasic epidemic clones described previously from North 32 America and Spain. The current UK monophasic epidemic clones encode a novel 33 genomic island encoding resistance to heavy metals (SGI-3), and composite transposon 34 encoding antibiotic resistance genes not present in other Typhimurium isolates, that 35 may have contributed to the epidemiological success. We also report a remarkable 36 degree of genotypic variation that accumulated during clonal expansion of a UK 37 epidemic including multiple independent acquisitions of a novel prophage carrying the 38 sopE gene and multiple deletion events affecting the phase II flagellin locus
Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria
The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n =β52), abattoir (n =β8), and animal markets (n =β10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (nβ=β196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum Ξ²-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (nβ=β157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with bla(CTX-M) present in all but others in a subset [bla(TEM) (62.8%) and bla(SHV) (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying bla(CTX-M-55) was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant bla(CTX-M) variant was bla(CTX-M-15) (87.9%), although bla(CTX-M-55), bla(CTX-M-64,) and bla(CTX-M-65) were present; it was notable that bla(CTX-M-1), common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, bla(TEM-1b), tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A bla(CTX-M-15) harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring bla(CTX-M-15.) Surprisingly, human isolates had highest numbers of AMR genes and pigs the least
Therapeutic effects of oral administration of lytic Salmonella phages in a mouse model of non-typhoidal salmonellosis
Acute non-typhoidal salmonellosis (NTS) caused by a Gram-negative bacterium Salmonella enterica serovar Typhimurium (S. Tm) is one of the most common bacterial foodborne diseases worldwide. Bacteriophages (phages) can specifically target and lyse their host bacteria, including the multidrug-resistant strains, without collateral damage to other bacteria in the community. However, the therapeutic use of Salmonella phages in vivo is still poorly investigated. Salmonella phages ST-W77 and SE-W109 have previously been shown by our group to be useful for biocontrol properties. Here, we tested whether phages ST-W77 and SE-W109 can reduce Salmonella invasion into cultured human cells and confer a therapeutic benefit for acute NTS in a mammalian host. Human colonocytes, T84 cells, were treated with phages ST-W77, SE-W109, and its combination for 5βmin before S. Tm infection. Gentamicin protection assays demonstrated that ST-W77 and SE-W109 significantly reduced S. Tm invasion and inflammatory response in human colonocytes. Next, streptomycin-pretreated mice were orally infected with S. Tm (10(8) CFU/mouse) and treated with a single or a combination of ST-W77 and SE-W109 (10(10) PFU/mouse for 4βdays) by oral feeding. Our data showed that phage-treated mice had lower S. Tm numbers and tissue inflammation compared to the untreated mice. Our study also revealed that ST-W77 and SE-W109 persist in the mouse gut lumen, but not in systemic sites. Together, these data suggested that Salmonella phages ST-W77 and SE-W109 could be further developed as an alternative approach for treating an acute NTS in mammalian hosts
- β¦