2 research outputs found

    MVF: A Novel Technique to Reduce the Voip Packet Payload Length

    No full text
    The adoption of the Voice over Internet Protocol (VoIP) system is growing due to several factors, including its meagre rate and the numerous contours that can be joined with VoIP systems. However, the wasteful utilisation of the computer network is an inevitable problem that limits the rapid growth of VoIP systems. The essential explanation behind this wasteful utilisation of the computer network bandwidth (BW) is the considerable preamble length of the VoIP packet. In this study, we invent a technique that addresses the considerable preamble length of the VoIP packet. The designed technique is known as the manikin voice frame (MVF). The primary idea of the MVF technique is to utilise the VoIP packet preamble tuples that are not essential to the voice calls, particularly client-to-client calls (voice calls between only two users). Specifically, these tuples will be utilised for reserving the data of the VoIP packet. In certain instances, this will make the VoIP packet data manikin or even make it empty. The performance assessment of the introduced MVF technique demonstrated that the utilisation of the computer network BW has enhanced by 33%. Along these lines, the MVF technique indicates potential progress in resolving the inefficient usage of the computer network BW

    Neural Network Prediction Model to Explore Complex Nonlinear Behavior in Dynamic Biological Network

    No full text
    Organism network systems provide a biological data with high complex level. Besides, these data reflect the complex activities in organisms that identifies nonlinear behavior as well. Hence, mathematical modelling methods such as Ordinary Differential Equations model (ODE's) are becoming significant tools to predict, and expose implied knowledge and data. Unfortunately, the aforementioned approaches face some of cons such as the scarcity and the vagueness in the biological knowledge to expect the protein concentrations measurements. So, the main object of this research presents a computational model such as a neural Feed Forward Network model using Back Propagation algorithm to engage with imprecise and missing biological knowledge to provide more insight about biological systems in organisms. Therefore, the model predicts protein concentration and illustrates the nonlinear behavior for the biological dynamic behavior in precise form. Also, the desired results are matched with recent ODE's model and it provides precise results in simpler form than ODEs
    corecore