315 research outputs found
An algorithm for learning from hints
To take advantage of prior knowledge (hints) about the function one wants to learn, we introduce a method that generalizes learning from examples to learning from hints. A canonical representation of hints is defined and illustrated. All hints are represented to the learning process by examples, and examples of the function are treated on equal footing with the rest of the hints. During learning, examples from different hints are selected for processing according to a given schedule. We present two types of schedules; fixed schedules that specify the relative emphasis of each hint, and adaptive schedules that are based on how well each hint has been learned so far. Our learning method is compatible with any descent technique
Maximal codeword lengths in Huffman codes
The following question about Huffman coding, which is an important technique for compressing data from a discrete source, is considered. If p is the smallest source probability, how long, in terms of p, can the longest Huffman codeword be? It is shown that if p is in the range 0 less than p less than or equal to 1/2, and if K is the unique index such that 1/F(sub K+3) less than p less than or equal to 1/F(sub K+2), where F(sub K) denotes the Kth Fibonacci number, then the longest Huffman codeword for a source whose least probability is p is at most K, and no better bound is possible. Asymptotically, this implies the surprising fact that for small values of p, a Huffman code's longest codeword can be as much as 44 percent larger than that of the corresponding Shannon code
Maximal codeword lengths in Huffman codes
computers &
Maximum Resilience of Artificial Neural Networks
The deployment of Artificial Neural Networks (ANNs) in safety-critical
applications poses a number of new verification and certification challenges.
In particular, for ANN-enabled self-driving vehicles it is important to
establish properties about the resilience of ANNs to noisy or even maliciously
manipulated sensory input. We are addressing these challenges by defining
resilience properties of ANN-based classifiers as the maximal amount of input
or sensor perturbation which is still tolerated. This problem of computing
maximal perturbation bounds for ANNs is then reduced to solving mixed integer
optimization problems (MIP). A number of MIP encoding heuristics are developed
for drastically reducing MIP-solver runtimes, and using parallelization of
MIP-solvers results in an almost linear speed-up in the number (up to a certain
limit) of computing cores in our experiments. We demonstrate the effectiveness
and scalability of our approach by means of computing maximal resilience bounds
for a number of ANN benchmark sets ranging from typical image recognition
scenarios to the autonomous maneuvering of robots.Comment: Timestamp research work conducted in the project. version 2: fix some
typos, rephrase the definition, and add some more existing wor
Deferring the learning for better generalization in radial basis neural networks
Proceeding of: International Conference Artificial Neural Networks — ICANN 2001. Vienna, Austria, August 21–25, 2001The level of generalization of neural networks is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the most appropriate training patterns to the new sample to be predicted. The proposed method has been applied to Radial Basis Neural Networks, whose generalization capability is usually very poor. The learning strategy slows down the response of the network in the generalisation phase. However, this does not introduces a significance limitation in the application of the method because of the fast training of Radial Basis Neural Networks
Data-driven-based vector space decomposition modeling of multiphase induction machines
For contemporary variable-speed electric drives, the accuracy of the machine's mathematical model is critical for optimal control performance. Basically, phase variables of multiphase machines are preferably decomposed into multiple orthogonal subspaces based on vector space decomposition (VSD). In the available literature, identifying the correlation between states governed by the dynamic equations and the parameter estimate of different subspaces of multiphase IM remains scarce, especially under unbalanced conditions, where the effect of secondary subspaces sounds influential. Most available literature has relied on simple RL circuit representation to model these secondary subspaces. To this end, this paper presents an effective data-driven-based space harmonic model for n-phase IMs using sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover the IM governing equations. Moreover, the proposed approach is computationally efficient, and it precisely identifies both the electrical and mechanical dynamics of all subspaces of an IM using a single transient startup run. Additionally, the derived model can be reformulated into the standard canonical form of the induction machine model to easily extract the parameters of all subspaces based on online measurements. Eventually, the proposed modeling approach is experimentally validated using a 1.5 Hp asymmetrical six-phase induction machine
- …