3 research outputs found
Beyond the Scoreboard: A Machine Learning Investigation of Online Games’ Influence on Jordanian University Students’ Grades
In the latter part of the 21st century, the prevalence of online games has significantly increased, encompassing titles connected to the Internet via smart devices, enabling multiplayer interaction. Recent media attention has shed light on the adverse effects associated with online gaming. This research paper explores the viewpoints of 4,700 university students in Jordan regarding the physical, psychological, and behavioural impacts of Internet games. Additionally, it predicts how these impacts may affect the academic performance of 1,410 students. To analyze student trends and forecast outcomes based on sustained game engagement, a convolutional neural network (CNN) was specifically developed for the neural network. The findings revealed student consensus with recommended university measures to limit online game usage, emphasizing a prevalent belief in the negative influence of games on the body, behaviour, and mental health. In terms of the prediction process, the training data encompassed 60%, 70%, and 80% of the dataset. The results revealed that the highest accuracy, 96.69%, was achieved at the 70% threshold for predicting students’ grade point average (GPA). The analysis suggested that projecting a decrease in the percentage of hours dedicated to playing online games could act as a mitigating factor to prevent GPA decline. Consequently, the system advises a range from 99.9% to 4.1%. This implies that a student with a maximum of 99.9% is encouraged to significantly reduce playing hours to preserve their GPA, while a student with a minimum of 4.1% is recommended to decrease playing hours by 4.1%. On average, for the 1,090 students, the system proposes a 48.36% reduction in playing hours to safeguard their GPAs and mitigate potential risks. This high level of accuracy played a crucial role in forecasting students’ GPA outcomes following a year of sustained daily engagement with online games. Notably, the results unveiled a concerning revelation that 80% of students would face a detrimental impact on their academic performance after one year of such consistent online game involvement
Twitter Sentiment Analysis Approaches: A Survey
Twitter is one of the most popular microblogging and social networking platforms where massive instant messages (i.e. tweets) are posted every day. Twitter sentiment analysis tackles the problem of analyzing users’ tweets in terms of thoughts, interests and opinions in a variety of contexts and domains. Such analysis can be valuable for several researchers and applications that require understanding people views about a particular topic or event. The study carried out in this paper provides an overview of the algorithms and approaches that have been used for sentiment analysis in twitter. The reviewed articles are categories into four categories based on the approach they use. Furthermore, we discuss directions for future research on how twitter sentiment analysis approaches can utilize theories and technologies from other fields such cognitive science, semantic Web, big data and visualization