80 research outputs found

    Correction to: COVID-19 biomarkers for severity mapped to polycystic ovary syndrome (Journal of Translational Medicine, (2020), 18, 1, (490), 10.1186/s12967-020-02669-2)

    Get PDF
    © 2021, The Author(s). An amendment to this paper has been published and can be accessed via the original article

    COVID-19 biomarkers for severity mapped to polycystic ovary syndrome

    Get PDF
    Large scale multi-omics analysis has identified significant differences in the biomarkers between COVID-19 disease and control subjects. These protein panels target biological processes involved in vessel damage, platelet degranulation, the coagulation cascade and the acute phase response, with greater protein changes dependent on the COVID-19 severity. However, it is observed that in metabolic conditions such as polycystic ovary syndrome expressed proteins differ compared to control women and PCOS patients have increased platelet aggregation and decreased plasma fibrinolytic activity, resulting in a prothrombotic propensity, with elevated coagulation markers. Therefore, any biomarkers reflecting COVID-19 disease and its severity would necessarily have to be independent of differentially-expressed proteins relating to other conditions; therefore, this proteomic analysis was undertaken in women with and without PCOS to compare with the proteomic biomarkers recently described in COVID-19 using shotgun proteomics followed by parallel reaction monitoring.</p

    Vitamin D Association With Macrophage-Derived Cytokines in Polycystic Ovary Syndrome: An Enhanced Risk of COVID-19 Infection?

    Get PDF
    © Copyright © 2021 Moin, Sathyapalan, Butler and Atkin. Background: Women with polycystic ovary syndrome (PCOS) often have vitamin D deficiency, a known risk factor for severe COVID-19 disease. Alveolar macrophage-derived cytokines contribute to the inflammation underlying pulmonary disease in COVID-19. We sought to determine if basal macrophage activation, as a risk factor for COVID-19 infection, was present in PCOS and, if so, was further enhanced by vitamin D deficiency. Methods: A cross-sectional study in 99 PCOS and 68 control women who presented sequentially. Plasma levels of a macrophage-derived cytokine panel were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Vitamin D was measured by tandem mass spectroscopy. Results: Vitamin D was lower in PCOS women (

    Inflammatory Markers in Non-Obese Women with Polycystic Ovary Syndrome Are Not Elevated and Show No Correlation with Vitamin D Metabolites

    Get PDF
    INTRODUCTION: Chronic low-grade inflammation is a characteristic of women with polycystic ovary syndrome (PCOS), although this may be obesity-driven rather than an intrinsic facet of PCOS; furthermore, vitamin D deficiency, another common feature of PCOS, is reported to have an association with increased inflammation. Therefore, circulating inflammatory protein levels and circulating levels of vitamin D may be linked in PCOS, though it is unclear which vitamin D metabolites may be important. METHODS: We measured plasma levels of 24 inflammatory proteins and 12 matrix metalloproteinases (proteins modulated by the inflammatory process) by slow off-rate modified aptamer (SOMA)-scan plasma protein measurement in weight and aged-matched non-obese non-insulin resistant PCOS (n = 24) and control (n = 24) women. Inflammatory proteins and matrix metalloproteinases were correlated to 25-hydroxy vitamin D3 (25(OH)D3), its epimer 25-hydroxy-3epi-vitamin D (3epi25(OH)D) and the active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) as measured by gold standard isotope-dilution liquid chromatography tandem mass spectrometry. RESULTS: PCOS women had both an elevated free androgen index and circulating anti-mullerian hormone, though insulin resistance was comparable to controls. C-reactive protein, as a standard circulatory marker of inflammation, was comparable between cohorts. Levels of circulating inflammatory proteins and matrix metalloproteinases were not different between the PCOS and control women, with no correlation of 25(OH)D3, 1,25(OH)2D3 or 3epi25(OH)D with any of the inflammatory proteins. CONCLUSION: In a non-obese PCOS population matched for age and insulin resistance, circulating inflammatory proteins and matrix metalloproteinases were not elevated and did not correlate with 25(OH)D3, its epimer 3epi25(OH)D or 1,25(OH)2D3 in either control or PCOS women, indicating that the inflammatory response is absent and the vitamin D-metabolite independent in non-obese women with PCOS

    A Cross-Sectional Study of Protein Changes Associated with Dementia in Non-Obese Weight Matched Women with and without Polycystic Ovary Syndrome

    Get PDF
    Dysregulated Alzheimer’s disease (AD)-associated protein expression is reported in polycystic ovary syndrome (PCOS), paralleling the expression reported in type 2 diabetes (T2D). We hypothesized, however, that these proteins would not differ between women with non-obese and non-insulin resistant PCOS compared to matched control subjects. We measured plasma amyloid-related proteins levels (Amyloid-precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS), Pappalysin (PAPPA), Microtubule-associated protein tau (MAPT), apolipoprotein E (apoE), apoE2, apoE3, apoE4, Serum amyloid A (SAA), Noggin (NOG) and apoA1) in weight and aged-matched non-obese PCOS (n = 24) and control (n = 24) women. Dementia-related proteins fibronectin (FN), FN1.3, FN1.4, Von Willebrand factor (VWF) and extracellular matrix protein 1 (ECM1) were also measured. Protein levels were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Only APCS differed between groups, being elevated in non-obese PCOS women (p = 0.03) relative to the non-obese control women. This differed markedly from the elevated APP, APCS, ApoE, FN, FN1.3, FN1.4 and VWF reported in obese women with PCOS. Non-obese, non-insulin resistant PCOS subjects have a lower AD-associated protein pattern risk profile versus obese insulin resistant PCOS women, and are not dissimilar to non-obese controls, indicating that lifestyle management to maintain optimal body weight could be beneficial to reduce the long-term AD-risk in women with PCOS

    A Cross-Sectional Study of Alzheimer-Related Proteins in Women with Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women of reproductive age, and several risk factors found in PCOS are associated with an increased risk of Alzheimer's disease (AD). Proteins increased in AD have been reported to include fibronectin (FN) fragments 3 and 4 (FN1.3 and FN1.4, respectively) and ApoE. We hypothesized that Alzheimer-related proteins would be dysregulated in PCOS because of associated insulin resistance and obesity. In this comparative cross-sectional analysis, aptamer-based SomaScan proteomic analysis for the detection of plasma Alzheimer-related proteins was undertaken in a PCOS biobank of 143 women with PCOS and 97 control women. Amyloid precursor protein (APP) (p < 0.05) and amyloid P-component (APCS) (p < 0.001) were elevated in PCOS, while alpha-synuclein (SNCA) (p < 0.05) was reduced in PCOS. Associations with protective heat shock proteins (HSPs) showed that SNCA positively correlated with HSP90 (p < 0.0001) and HSP60 (p < 0.0001) in both the PCOS and control women. Correlations with markers of inflammation showed that APCS correlated with interleukin 6 (IL6) (p = 0.04), while Apolipoprotein (Apo) E3 correlated with TNF-alpha (p = 0.02). FN, FN1.3, FN1.4 and ApoE were all elevated significantly (p < 0.05). An AD-associated protein pattern with elevated FN, FN1.3, FN1.4 and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was the same as reported for type 2 diabetes (T2D) with, additionally, an elevation in APCS. With the AD biomarker pattern in PCOS being very similar to that in T2D, where there is an association between AD and T2D, this suggests that larger prospective cohort studies are needed in women with PCOS to determine if there is a causal association with AD

    Diagnostic and Prognostic Protein Biomarkers of β-Cell Function in Type 2 Diabetes and Their Modulation with Glucose Normalization

    Get PDF
    Development of type-2 diabetes(T2D) is preceded by β-cell dysfunction and loss. How-ever, accurate measurement of β-cell function remains elusive. Biomarkers have been reported to predict β-cell functional decline but require validation. Therefore, we determined whether reported protein biomarkers could distinguish patients with T2D (onset < 10-years) from controls. A prospective, parallel study in T2D (n = 23) and controls (n = 23) was undertaken. In T2D subjects, insulin-induced blood glucose normalization from baseline 7.6 ± 0.4 mmol/L (136.8 ± 7.2 mg/dL) to 4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dL) was maintained for 1-h. Controls were maintained at 4.9 ± 0.1 mmol/L (88.2 ± 1.8 mg/dL). Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement determined a 43-protein panel reported as diagnostic and/or prognostic for T2D. At baseline, 9 proteins were altered in T2D. Three of 13 prognostic/diagnostic proteins were lower in T2D: Adiponectin (p < 0.0001), Endocan (p < 0.05) and Mast/stem cell growth factor receptor-Kit (KIT) (p < 0.01). Two of 14 prognostic proteins [Cathepsin-D (p < 0.05) and Cadherin-E (p < 0.005)], and four of 16 diagnostic proteins [Kallikrein-4 (p = 0.001), Aminoacylase-1 (p = 0.001), Insulin-like growth factor-binding protein-4 (IGFBP4) (p < 0.05) and Reticulon-4 receptor (RTN4R) (p < 0.001)] were higher in T2D. Protein levels were unchanged following glucose normalization in T2D. Our results suggest that a focused biomarker panel may be useful for assessing β-cell dysfunction and may complement clinical decision-making on insulin therapy. Unchanged post-glucose normalization levels indicate these are not acute-phase proteins or affected by glucose variability

    Components of the Complement Cascade Differ in Polycystic Ovary Syndrome

    Get PDF
    Complement pathway proteins are reported to be increased in polycystic ovary syndrome (PCOS) and may be affected by obesity and insulin resistance. To investigate this, a proteomic analysis of the complement system was undertaken, including inhibitory proteins. In this cohort study, plasma was collected from 234 women (137 with PCOS and 97 controls). SOMALogic proteomic analysis was undertaken for the following complement system proteins: C1q, C1r, C2, C3, C3a, iC3b, C3b, C3d, C3adesArg, C4, C4a, C4b, C5, C5a, C5b-6 complex, C8, properdin, factor B, factor D, factor H, factor I, mannose-binding protein C (MBL), complement decay-accelerating factor (DAF) and complement factor H-related protein 5 (CFHR5). The alternative pathway of the complement system was primarily overexpressed in PCOS, with increased C3 (p < 0.05), properdin and factor B (p < 0.01). In addition, inhibition of this pathway was also seen in PCOS, with an increase in CFHR5, factor H and factor I (p < 0.01). Downstream complement factors iC3b and C3d, associated with an enhanced B cell response, and C5a, associated with an inflammatory cytokine release, were increased (p < 0.01). Hyperandrogenemia correlated positively with properdin and iC3b, whilst insulin resistance (HOMA-IR) correlated with iC3b and factor H (p < 0.05) in PCOS. BMI correlated positively with C3d, factor B, factor D, factor I, CFHR5 and C5a (p < 0.05). This comprehensive evaluation of the complement system in PCOS revealed the upregulation of components of the complement system, which appears to be offset by the concurrent upregulation of its inhibitors, with these changes accounted for in part by BMI, hyperandrogenemia and insulin resistance

    Complement Dysregulation in Obese Versus Nonobese Polycystic Ovary Syndrome Patients

    Get PDF
    Introduction: Upregulation of complement system factors are reported to be increased in polycystic ovary syndrome (PCOS) and may be due to obesity and insulin resistance rather than inherently due to PCOS. We directly compared complement factors from an obese, insulin-resistant PCOS population to a nonobese, non-insulin-resistant PCOS population in a proteomic analysis to investigate this. Methods: Plasma was collected from 234 women (137 with PCOS and 97 controls) from a biobank cohort and compared to a nonobese, non-insulin-resistant population (24 with PCOS and 24 controls). Slow off-rate modified aptamer (SOMA) scan plasma protein measurement was undertaken for the following complement system proteins: C1q, C1r, C2, C3, C3a, iC3b, C3b, C3d, C3adesArg, C4, C4a, C4b, C5, C5a, C5b-6 complex, C8, properdin, factor B, factor D, factor H, factor I, Mannose-binding protein C (MBL), complement decay-accelerating factor (DAF) and complement factor H-related protein 5 (CFHR5). Results: The alternative pathway of the complement system was overexpressed in both obese and nonobese PCOS, with increased C3 (p < 0.05) and properdin (p < 0.01); additionally, factor B increased in obese PCOS (p < 0.01). For inhibitors of this pathway, factor I was increased (p < 0.01) in both slim and obese PCOS, with an increase in CFHR5 and factor H in obese PCOS (p < 0.01). Complement factors iC3b, C3d and C5a, associated with an enhanced B cell response and inflammatory cytokine release, were increased in both slim and obese PCOS (p < 0.05). C3a and its product, C3adesArg, were both significantly elevated in nonobese PCOS (<0.01) but not altered in obese PCOS. Hyperandrogenemia correlated positively with properdin and iC3b in obese PCOS (p < 0.05) but not in nonobese PCOS. There was no association with insulin resistance. BMI correlated positively in both groups with factor B, factor H and C5a. Additionally, in obese PCOS, BMI correlated with C3d, factor D, factor I, CFHR5 and C5a (p < 0.05), and in nonobese PCOS, BMI correlated with properdin, iC3b, C3, C3adesArg, C3a, C4, C5, C5a and C1q. In obese controls, BMI correlated with C3, C3desArg, C3a, C3d, C4, factor I, factor B, C5a and C5, whilst in nonobese controls, BMI only correlated negatively with C1q. Comparison of nonobese and obese PCOS showed that properdin, C3b, iC3b, C4A, factor D, factor H and MBL differed. Conclusion: The upregulation of the alternative complement pathway was seen in nonobese PCOS and was further exacerbated in obese PCOS, indicating that this is an inherent feature of the pathophysiology of PCOS that is worsened by obesity and is reflected in the differences between the nonobese and obese PCOS phenotypes. However, the increase in the complement proteins associated with activation was counterbalanced by upregulation of complement inhibitors; this was evident in both PCOS groups, suggesting that insults, such as a cardiovascular event or infection, that cause activation of complement pathways may be amplified in PCOS
    corecore