46 research outputs found

    THE USAGE OF MEDICAL INFORMATICS IN CRITICAL CARE MEDICINE

    Get PDF
    Introduction: The intensive care unit can be defined as a complex system that composed of clinical informations, tasks and knowledge. It is also one of the most stressful and most vital parts of healthcare centers which involve a huge amount of information and clinical data daily. These informations should be analyzed and managed in the best way as soon as possible to restore patients to normal by health professionals. Accurate and timely diagnosis, the best treatment and to avoid any possible error in this section can be equivalent to achieve the best possible result and reducing the length of hospitalization and mortality. As a result, due to the complex nature of the critical care and the mass of clinical data; using a combination of medical knowledge with the latest technologies and use of medical informatics capabilities can be the best way to reduce the workload of the sector and improve the quality of patient care. Methods: A systematic search was conducted on the PubMed/MEDLINE, web of science, BMJ, ScienceDirect, and Scopus database for finding studies that have related to critical care and usage of informatics or medical informatics. The collected data and results are summarized by researchers and the results analyzed based on similarities and differences. Results: With increased development of medical informatics and electronic systems has led to substantial progress in the field of critical care since 1980 till now around the world. Several articles, research projects has published. From 1981 to 2016 almost 600 scientific papers were found which included reports, posters and thesis written in context of critical care medical informatics. More than 65 percent of these studies is about designing CDSS in this field. Today, many of these systems are used in medical centers around the world and lead to improving the quality of patient care and reduce medical errors in intensive care units. Among these 600 papers, 230 articles related to our issue in fields of the design of electronic records, clinical information systems, decision support systems, data mining, telemedicine, smart analysis of clinical information and knowledge extraction techniques were selected as the main source of this study. Conclusion: According to results of our study, it seems that critical care is potentially a valuable resource for medical informatics researches. The applied of medical informatics in the different fields of the diagnosis, interpretation, and treatment in different countries have improved the quality of care for patients in critical care field. We can mention some common fields which used such as infection control and early detection in intensive care units, clinical information systems, and CPOE and decision support systems such as APACHE system for grading the severity of illness of patients who hospitalized and even telemedicine. Since this area of research has not been a field of interest in Iran yet, it seems that this study with the aim of review the application of medical informatics in different countries could lead to practical researches in this field

    Hearing loss etiology in patients referring to Isfahan cochlear implantation center

    Get PDF
    Introduction: Hearing loss is the most common congenital disorders occurring among newborn. Identifying the factors affecting it would reduce the incidence of this disorder. Therefore, the aim of this study was to examine the etiology of congenital hearing loss in patients referring to Isfahan Cochlear implantation center. Materials and Method: This study was performed on 689 patients with cochlear implantation. Demographic data and relative frequency of different causes of congenital hearing loss (acquired and genetic) were determined and recorded. T-test, Chi-Square and Mann-Whitney tests were used to compare the variables studied. Results: Our findings showed that 50 patients (7.7%) had history of drug use, 9 (1.3%) had history of taking ototoxic drugs, 99 (14.3%) had history of kernicterus, 157 patients (22.8%) had a history of hyperbilirubinemia, 15 (2.1%) history of meningitis, 57 (8.3%) had a history of seizure, one (0.1%) had a birth weight less than 1500 grams, 4 cases (0.06%) had history of hypoxia, 18 cases (2.6%) had history of trauma, one (0.1%) had CMV history, and one (0.1%) hearing loss due to syndromicity. On the other hand, it was determined that the probable causes of hearing loss were not related to the severity of hearing loss and age of the patients (p <0.05) Conclusion: Although the prevalence of congenital hearing loss is low, it is important to identify and screen for postnatal congenital hearing loss, especially in people with risk factors known in this study, including patients with kernicterus.

    Thinking outside the skin: Look at the thyroid for true diagnosis

    Get PDF
    Keratoderma is a group of disorders characterized by abnormal thickening of skin. Acquired palmar keratoderma has many underlying causes. The association of thyroid disease and palmar keratoderma rarely reported. Hypothyroidism, although very rare association, must be suspected in patients with acquired PPK, particularly when it occurs in setting of systemic symptoms or predisposing conditions.We report first case of acquired plantar keratoderma associated with undiagnosed hypothyroidism in Down syndrome

    Low-level laser for treatment of tinnitus: a self-controlled clinical trial

    Get PDF
    BACKGROUND: Despite the high prevalence and morbidity, tinnitus still remains an obscure symptom. We assessed the efficacy of low-level laser for treatment of tinnitus. METHODS: It was a self controlled clinical trial study on 61 outpatients with subjective tinnitus. The patients were irradiated with a 650-nm, 5-mW soft laser for twenty days and twenty minutes per day. The sensation of tinnitus was measured on a Visual Analog Scale (VAS) before and two weeks after treatment and they were compared by means of Wilcoxon signed rank-test. RESULTS: Thirty-eight (62.3%) patients were men and twenty-three (37.7%) were women. Fourteen patients (31.8%) worked in noisy environment. The VAS mean difference before and after the treatment was statistically significant (p < 0.0001). The best treatment effect was in the youngest group and there were significant differences between this group and the middle age and older groups (p = 0.018 and 0.001, respectively). The mean VAS score reduction was not statistically significant between male and female patients (p = 0.23). Also, the treatment outcome according to the noise level in patient’s workplaces was not significantly different in women (p = 0.693), but it was significant in men (p = 0.029). CONCLUSIONS: Transmeatal low-level laser irradiation is effective for the treatment of tinnitus and some variables like age and job can affect the treatment outcom

    COVID-19 Associated Mucormycosis::A Review of an Emergent Epidemic Fungal Infection in 3 Era of COVID-19 Pandemic

    Get PDF
    At a time when the COVID-19's second wave is still picking up in countries like India, a number of reports describe the potential association with a rise in the number of cases of mucormycosis, commonly known as the black fungus. This fungal infection has been around for centuries and affects those people whose immunity has been compromised due to severe health conditions. In this article, we provide a detailed overview of mucormycosis and discuss how COVID-19 could have caused a sudden spike in an otherwise rare disease in countries like India. The article discusses the various symptoms of the disease, class of people most vulnerable to this infection, preventive measures to avoid the disease, and various treatments that exist in clinical practice and research to manage the disease

    GJB2 mutations causing autosomal recessive non-syndromic hearing loss (ARNSHL) in two Iranian populations: Report of two novel variants

    Get PDF
    OBJECTIVE: Hereditary hearing loss (HL) is a noticeable concern in medicine all over the world. On average, 1 in 166 babies born are diagnosed with HL in Iran, which makes it a major public health issue. Autosomal recessive non-syndromic HL (ARNSHL) is the most prevalent form of HL. Although over 60 genes have been identified for ARNSHL, GJB2 mutations are the most prevalent causes of ARNSHL in many populations. Previous studies have estimated the average frequency of GJB2 mutations to be between 16 and 18% in Iran, but would vary among different ethnic groups. In the present study, we aimed to determine the frequency and mutation profile of 70 deaf patients from two different provinces (center and west) of Iran. METHODS: We enrolled 70 Iranian deaf patients with ARNSHL from Isfahan (40 family) and Hamedan (30 family) provinces. After extraction of genomic DNA, the entire coding region of GJB2 was directly sequenced in all patients. Multiplex PCR was used for detection of del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene. In silico analyses were also performed by available software tools. RESULTS: A total of eleven different mutations were detected, nine of which were previously reported and the other two (c.130T > G and c.178T > G) were novel. Homozygous GJB2 mutations were observed in 22.5% and 20% of all the subjects from Isfahan and Hamedan provinces, respectively. c.35delG was the most frequent mutation. One compound heterozygous genotype (c.358_360delGAG/c.35delG) was observed for c.35delG. Screening for the two GJB6 deletions did not reveal any positive sample among heterozygous or GJB2 negative samples. CONCLUSIONS: The present study suggests that mutations in the GJB2 gene specially c.35delG are important causes of ARNSHL in the center and west of Iran. Totally, 15% of the patients were heterozygous carriers. Further investigation is needed to detect the genetic cause of HL in the patients with monoallelic GJB2 mutations

    Screening of 10 DFNB Loci Causing Autosomal Recessive Non-Syndromic Hearing Loss in Two Iranian Populations Negative for GJB2 Mutations.

    Get PDF
    BACKGROUND: Autosomal recessive non-syndromic hearing loss (ARNSHL), one of the global public health concerns, is marked by a high degree of genetic heterogeneity. The role of GJB2, as the most common cause of ARNSHL, is only <20% in the Iranian population. Here, we aimed to determine the relative contribution of several apparently most common loci in a cohort of ARNSHL Iranian families that were negative for the GJB2 mutations. METHODS: Totally, 80 Iranian ARNSHL families with 3 or more affected individuals from Isfahan and Hamedan provinces, Iran were enrolled in 2017. After excluding mutations in the GJB2 gene via Sanger sequencing, 60 negative samples (30 families from each province) were analyzed using homozygosity mapping for 10 ARNSHL loci. RESULTS: Fourteen families were found to be linked to five different known loci, including DFNB4 (5 families), DFNB2 (3 families), DFNB7/11 (1 family), DFNB9 (2 families) and DFNB3 (3 families). CONCLUSION: Despite the high heterogeneity of ARNSHL, the genetic causes were determined in 23.5% of the studied families using homozygosity mapping. This data gives an overview of the ARNSHL etiology in the center and west of Iran, used to establish a diagnostic gene panel including most common loci for hearing loss diagnostics. Copyright© Iranian Public Health Association & Tehran University of Medical Sciences. KEYWORDS: Autosomal recessive non-syndromic hearing loss (ARNSHL); DFNB loci; Homozygosity mapping; Ira

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore