18 research outputs found

    Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals

    Full text link
    We have developed a convenient strategy for preparing color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals, which exhibit excellent photoluminescence (PL) properties (fluorescing tunably from 550 nm to 630 nm by modifying the shell thickness) and ferromagnetic material properties (a magnetization of 4.4 emu g(-1) and a coercivity of 95 Oe)

    Activity-Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis

    Full text link
    © 2020 American Chemical Society. Despite breakthroughs in the activity of electrocatalysts for the oxygen reduction reaction (ORR), the development of nanoscale ORR electrocatalysts is still hindered by their instability. Here, to bridge the functional link between activity and stability, well-controlled Au@Pt (core@shell) nanoparticles are investigated. In situ monitoring of atomic dissolution and physicochemical analysis in conjunction with theoretical calculations reveal that the atomic-level stability of Au@Pt nanoparticle is attributed to the low surface coverage of OH and oxide on Pt, balancing between strain and ligand effect of Au at the interface. Considering the relationships in activity-stability-oxophilicity, the functional links between activity and stability in the ORR are discussed, and the regulation of oxophilicity is suggested as a guideline for designing highly active and durable electrocatalysts for fuel cell applications11sciescopu

    ActivityStability Relationship in Au@Pt Nanoparticles for Electrocatalysis

    Full text link
    © 2020 American Chemical Society. Despite breakthroughs in the activity of electrocatalysts for the oxygen reduction reaction (ORR), the development of nanoscale ORR electrocatalysts is still hindered by their instability. Here, to bridge the functional link between activity and stability, well-controlled Au@Pt (core@shell) nanoparticles are investigated. In situ monitoring of atomic dissolution and physicochemical analysis in conjunction with theoretical calculations reveal that the atomic-level stability of Au@Pt nanoparticle is attributed to the low surface coverage of OH and oxide on Pt, balancing between strain and ligand effect of Au at the interface. Considering the relationships in activity-stability-oxophilicity, the functional links between activity and stability in the ORR are discussed, and the regulation of oxophilicity is suggested as a guideline for designing highly active and durable electrocatalysts for fuel cell applications11sciescopu
    corecore