5 research outputs found

    MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation

    No full text
    We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 arcmin to 2 degrees. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary data set was collected during a 26 hour turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress

    The MAXIMA Experiment: Latest Results and Consistency Tests

    No full text
    The MAXIMA cosmic microwave background anisotropy experiment had a significant impact on cosmology. Results from the program have played a significant role in determining the geometry of the universe, given strong supporting evidence to inflation, and, in combination with other astrophysical data, showed that the universe is filled with dark matter and energy. We present a subset of the internal consistency checks that were carried out on the MAXIMA-1 data prior to their release, which demonstrate that systematics errors were much smaller than statistical errors. We also discuss the MAXIMA-2 flight and data, compare the maps of MAXIMA-1 and -2 in areas where they overlap and show that the two independent experiments confirm each other. All of these results demonstrate that MAXIMA mapped the cosmic microwave background anisotropy with high accurac

    Correlations Between the WMAP and MAXIMA Cosmic Microwave Background Anisotropy Maps

    No full text
    We cross-correlate the cosmic microwave background temperature anisotropy maps from the WMAP, MAXIMA-I, and MAXIMA-II experiments. We use the cross-spectrum, which is the spherical harmonic transform of the angular two-point correlation function, to quantify the correlation as a function of angular scale. We find that the three possible pairs of cross-spectra are in close agreement with each other and with the power spectra of the individual maps. The probability that there is no correlation between the maps is smaller than 1 * 10^(-8). We also calculate power spectra for maps made of differences between pairs of maps, and show that they are consistent with no signal. The results conclusively show that the three experiments not only display the same statistical properties of the CMB anisotropy, but also detect the same features wherever the observed sky areas overlap. We conclude that the contribution of systematic errors to these maps is negligible and that MAXIMA and WMAP have accurately mapped the cosmic microwave background anisotropy

    MAXIMA: A Balloon-Borne Cosmic Microwave Background Anisotropy Experiment

    No full text
    We describe the Millimeter wave Anisotropy eXperiment IMaging Array (MAXIMA), a balloon-borne experiment designed to measure the temperature anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 10' to 5 degrees . MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150 GHz, 240 GHz, and 410 GHz, with 10' resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was ~40 microK/rt(sec). Systematic parasitic contributions were minimized by using four uncorrelated spatial modulations, thorough crosslinking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1', and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 hours of CMB observations have mapped a total of 300 deg^2 of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications. MAXIMA maps, power spectra and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxim
    corecore