24 research outputs found

    Impact of Galactic dust non-Gaussianity on searches for B-modes from inflation

    Full text link
    A key challenge in the search for primordial B-modes is the presence of polarized Galactic foregrounds, especially thermal dust emission. Power-spectrum-based analysis methods generally assume the foregrounds to be Gaussian random fields when constructing a likelihood and computing the covariance matrix. In this paper, we investigate how non-Gaussianity in the dust field instead affects CMB and foreground parameter inference in the context of inflationary B-mode searches, capturing this effect via modifications to the dust power-spectrum covariance matrix. For upcoming experiments such as the Simons Observatory, we find no dependence of the tensor-to-scalar ratio uncertainty σ(r)\sigma(r) on the degree of dust non-Gaussianity or the nature of the dust covariance matrix. We provide an explanation of this result, noting that when frequency decorrelation is negligible, dust in mid-frequency channels is cleaned using high-frequency data in a way that is independent of the spatial statistics of dust. We show that our results hold also for non-zero levels of frequency decorrelation that are compatible with existing data. We find, however, that neglecting the impact of dust non-Gaussianity in the covariance matrix can lead to inaccuracies in goodness-of-fit metrics. Care must thus be taken when using such metrics to test B-mode spectra and models, although we show that any such problems can be mitigated by using only cleaned spectrum combinations when computing goodness-of-fit statistics.Comment: 16 pages, 8 figures, accepted versio

    Joint analysis constraints on the physics of the first galaxies with low frequency radio astronomy data

    Full text link
    Observations of the first billion years of cosmic history are currently limited. We demonstrate, using a novel machine learning technique, the synergy between observations of the sky-averaged 21-cm signal from neutral hydrogen and interferometric measurements of the corresponding spatial fluctuations. By jointly analysing data from SARAS3 (redshift z≈15−25z\approx15-25) and limits from HERA (z≈8z\approx8 and 1010), we show that such a synergetic analysis provides tighter constraints on the astrophysics of galaxies 200 million years after the Big Bang than can be achieved with the individual data sets. Although our constraints are weak, this is the first time data from a sky-averaged 21-cm experiment and power spectrum experiment have been analysed together. In synergy, the two experiments leave only 64.9−0.1+0.364.9^{+0.3}_{-0.1} % of the explored broad theoretical parameter space to be consistent with the joint data set, in comparison to 92.3−0.1+0.392.3^{+0.3}_{-0.1} % for SARAS3 and 79.0−0.2+0.579.0^{+0.5}_{-0.2} % for HERA alone. We use the joint analysis to constrain star formation efficiency, minimum halo mass for star formation, X-ray luminosity of early emitters and the radio luminosity of early galaxies. The joint analysis disfavours at 68 % confidence a combination of galaxies with X-ray emission that is ≲33\lesssim 33 and radio emission that is ≳32\gtrsim 32 times as efficient as present day galaxies. We disfavour at 95 % confidence scenarios in which power spectra are ≥126\geq126 mK2^{2} at z=25z=25 and the sky-averaged signals are ≤−277\leq-277 mK.Comment: Submitte

    The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing

    Full text link
    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2≲z≲1.10.2 \lesssim z \lesssim 1.1 and 0.3≲z≲1.80.3 \lesssim z \lesssim 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analysing our measurements with a more flexible theoretical model. An extensive suite of systematic and null tests within a blind analysis framework ensures that our results are robust. We determine the amplitude of matter fluctuations at low redshifts (z≃0.2−1.6z\simeq 0.2-1.6), finding S8≡σ8(Ωm/0.3)0.5=0.813±0.021S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5} = 0.813 \pm 0.021 using the ACT cross-correlation alone and S8=0.810±0.015S_8 = 0.810 \pm 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of Baryon Acoustic Oscillation data breaks the degeneracy between σ8\sigma_8 and Ωm\Omega_m, allowing us to measure σ8=0.813±0.020\sigma_8 = 0.813 \pm 0.020 from the cross-correlation of unWISE with ACT and σ8=0.813±0.015\sigma_8 = 0.813\pm 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in Λ\LambdaCDM cosmology; the consistency of σ8\sigma_8 derived from our two redshift samples at z∼0.6z \sim 0.6 and 1.11.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by Λ\LambdaCDM even down to low redshifts z≲1z\lesssim 1.Comment: 73 pages (incl. 30 pages of appendices), 50 figures, 16 tables, to be submitted to ApJ. Watch G. S. Farren and A. Krolewski discuss the analysis and results under https://cosmologytalks.com/2023/09/11/act-unwis

    The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis

    Full text link
    We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator, together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, AlensA_{\mathrm{lens}}, biased by less than 0.2σ0.2\sigma. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, incurring either a large noise cost, or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests performed on the ACT DR6 data which test for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds.Comment: Companion paper to Qu et al and Madhavacheril et a

    The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing

    Get PDF
    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲ z ≲ 1.1 and 0.3 ≲ z ≲ 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analyzing our measurements with a more flexible theoretical model. We determine the amplitude of matter fluctuations at low redshifts (z ≃ 0.2–1.6), finding S8≡σ8(Ωm/0.3)0.5=0.813±0.021 using the ACT cross-correlation alone and S 8 = 0.810 ± 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of baryon acoustic oscillation data breaks the degeneracy between σ 8 and Ω m , allowing us to measure σ 8 = 0.813 ± 0.020 from the cross-correlation of unWISE with ACT and σ 8 = 0.813 ± 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in ΛCDM cosmology; the consistency of σ 8 derived from our two redshift samples at z ∼ 0.6 and 1.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by ΛCDM even down to low redshifts z ≲ 1

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z∼0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z∼1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a

    The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters

    Full text link
    We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations σ8=0.819±0.015\sigma_8 = 0.819 \pm 0.015 at 1.8% precision, S8≡σ8(Ωm/0.3)0.5=0.840±0.028S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.840\pm0.028 and the Hubble constant H0=(68.3±1.1) km s−1 Mpc−1H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1} at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: σ8=0.812±0.013\sigma_8 = 0.812 \pm 0.013, S8≡σ8(Ωm/0.3)0.5=0.831±0.023S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.831\pm0.023 and H0=(68.1±1.0) km s−1 Mpc−1H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}. These measurements agree well with Λ\LambdaCDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S8S_8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1σ\sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z∼0.5−5z\sim 0.5-5 on mostly-linear scales and galaxy lensing at z∼0.5z\sim 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Λ\LambdaCDM, limiting the sum of the neutrino masses to ∑mν<0.12\sum m_{\nu} < 0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Λ\LambdaCDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological likelihood data is here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al. Mass maps will be released when papers are publishe

    The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

    Full text link
    Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-yy distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-yy map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made publi

    The Atacama Cosmology Telescope: mitigating the impact of extragalactic foregrounds for the DR6 cosmic microwave background lensing analysis

    Get PDF
    We investigate the impact and mitigation of extragalactic foregrounds for the cosmic microwave background (CMB) lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, A lens, biased by less than 0.2σ. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high-frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, either incurring a large noise cost or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests on the ACT DR6 data for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying that contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds

    The Atacama Cosmology Telescope: A measurement of the DR6 CMB lensing power spectrum and its implications for structure growth

    Get PDF
    We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8Ωm/0.30.25 of S8CMBL=0.818±0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts
    corecore