16,373 research outputs found

    A photometric analysis of Abell 1689: two-dimensional multi-structure decomposition, morphological classification, and the Fundamental Plane

    Get PDF
    We present a photometric analysis of 65 galaxies in the rich cluster Abell 1689 at z=0.183z=0.183, using the Hubble Space Telescope Advanced Camera for Surveys archive images in the rest-frame VV-band. We perform two-dimensional multi-component photometric decomposition of each galaxy adopting different models of the surface-brightness distribution. We present an accurate morphological classification for each of the sample galaxies. For 50 early-type galaxies, we fit both a de Vaucouleurs and S\'ersic law; S0s are modelled by also including a disc component described by an exponential law. Bars of SB0s are described by the profile of a Ferrers ellipsoid. For the 15 spirals, we model a S\'ersic bulge, exponential disc, and, when required, a Ferrers bar component. We derive the Fundamental Plane by fitting 40 early-type galaxies in the sample, using different surface-brightness distributions. We find that the tightest plane is that derived by S\'ersic bulges. We find that bulges of spirals lie on the same relation. The Fundamental Plane is better defined by the bulges alone rather than the entire galaxies. Comparison with local samples shows both an offset and rotation in the Fundamental Plane of Abell 1689.Comment: 53 pages, 71 figures, MNRAS in pres

    Deep spectroscopic luminosity function of Abell 85: no evidence for a steep upturn of the faint-end slope

    Get PDF
    We present a new deep determination of the spectroscopic LF within the virial radius of the nearby and massive Abell\,85 (A85) cluster down to the dwarf regime (M* + 6) using VLT/VIMOS spectra for ∼2000\sim 2000 galaxies with mr≤21_r \leq 21 mag and ⟨μe,r⟩≤24\langle \mu_{e,r} \rangle \leq 24 mag arcsec−2^{-2}. The resulting LF from 438 cluster members is best modelled by a double Schechter function due to the presence of a statistically significant upturn at the faint-end. The amplitude of this upturn (αf=−1.58−0.15+0.19\alpha_{f} = -1.58^{+0.19}_{-0.15}), however, is much smaller than that of the SDSS composite photometric cluster LF by Popesso et al. 2006, αf∼\alpha_{f} \sim -2. The faint-end slope of the LF in A85 is consistent, within the uncertainties, with that of the field. The red galaxy population dominates the LF at low luminosities, and is the main responsible for the upturn. The fact that the slopes of the spectroscopic LFs in the field and in a cluster as massive as A85 are similar suggests that the cluster environment does not play a major role in determining the abundance of low-mass galaxies.Comment: 6 pages, 4 figures, accepted at MNRAS lette

    The Jacobi identity for Dirac-like brackets

    Get PDF
    For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2+1 dimensions and the original Brink-Schwarz massless superparticle in D=10 dimensions in a Lorentz covariant constraints separation.Comment: 14 pages, Latex. Final version to be published in Int. J. Mod. Phys.

    Clan structure analysis and new physics signals in pp collisions at LHC

    Full text link
    The study of possible new physics signals in global event properties in pp collisions in full phase space and in rapidity intervals accessible at LHC is presented. The main characteristic is the presence of an elbow structure in final charged particle MD's in addition to the shoulder observed at lower c.m. energies.Comment: 9 pages, talk given at Focus on Multiplicity (Bari, Italy, June 2004

    Tolman mass, generalized surface gravity, and entropy bounds

    Full text link
    In any static spacetime the quasi-local Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary bounds on the quasi-local entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some notational changes for clarity; introductory paragraph rewritten; no physics changes. This version accepted for publication in Physical Review Letter
    • …
    corecore