4 research outputs found

    Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool

    Get PDF
    This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution – an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is a two objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, Code_Aster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic

    Nimrod: A Tool for Performing Parametised Simulations using Distributed Workstations

    No full text
    This paper discusses Nimrod, a tool for performing parametised simulations over networks of loosely coupled workstations. Using Nimrod the user interactively generates a parametised experiment. Nimrod then controls the distribution of jobs to machines and the collection of results. A simple graphical user interface which is built for each application allows the user to view the simulation in terms of their problem domain. The current version of Nimrod is implemented above OSF DCE and runs on DEC Alpha and IBM RS6000 workstations (including a 22 node SP2). Two different case studies are discussed as an illustration of the utility of the system. 1 INTRODUCTION A wide range of scientific and engineering experiments can be solved using numeric simulation. Examples include finite element analysis, computational fluid dynamics, electromagnetic and electronic simulation, pollution transport, granular flow and digital logic simulation. Accordingly, some very large codes have been written over ..
    corecore