4 research outputs found
Safety of celecoxib and nonselective nonsteroidal anti-inflammatory drugs in juvenile idiopathic arthritis: results of the phase 4 registry
BACKGROUND: This study aimed to assess long-term safety and developmental data on juvenile idiopathic arthritis (JIA) patients treated in routine clinical practice with celecoxib or nonselective nonsteroidal anti-inflammatory drugs (nsNSAIDs). METHODS: Children aged ≥2 to <18 years with rheumatoid-factor–positive or –negative polyarthritis, persistent or extended oligoarthritis, or systemic arthritis were enrolled into this prospective, observational, multicenter standard-of-care registry. Eligible patients were newly or recently prescribed (≤6 months) an nsNSAID or celecoxib. Enrolled patients were followed to the end of the study, whether they remained on the original NSAID, switched, or discontinued therapy altogether. All adverse events (AEs) regardless of severity were captured in the database. RESULTS: A total of 274 patients (nsNSAID, n = 219; celecoxib, n = 55) were observed for 410 patient-years of observation. Naproxen, meloxicam, and nabumetone were the most frequently used nsNSAIDs. At baseline, the celecoxib group was older, had a numerically longer median time since diagnosis, and a numerically higher proportion of patients with a history of gastrointestinal-related NSAID intolerance. AEs reported were those frequently observed with NSAID treatment and were similar across groups (nsNSAIDs: 52.0%; celecoxib: 52.9%). Twelve unique patients experienced a total of 18 serious AEs; the most frequent were infections, and none was attributed to NSAID use. CONCLUSIONS: The safety profile of celecoxib and nsNSAIDs appears similar overall. The results from this registry, ongoing pharmacovigilance, and the phase 3 trial that led to the approval of celecoxib for children with JIA provide evidence that the benefit-risk for celecoxib treatment in JIA remains positive. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00688545
Coronary intervention for persistent occlusion after myocardial infarction
BACKGROUND:
It is unclear whether stable, high-risk patients with persistent total occlusion of the infarct-related coronary artery identified after the currently accepted period for myocardial salvage has passed should undergo percutaneous coronary intervention (PCI) in addition to receiving optimal medical therapy to reduce the risk of subsequent events.
METHODS:
We conducted a randomized study involving 2166 stable patients who had total occlusion of the infarct-related artery 3 to 28 days after myocardial infarction and who met a high-risk criterion (an ejection fraction of <50% or proximal occlusion). Of these patients, 1082 were assigned to routine PCI and stenting with optimal medical therapy, and 1084 were assigned to optimal medical therapy alone. The primary end point was a composite of death, myocardial reinfarction, or New York Heart Association (NYHA) class IV heart failure.
RESULTS:
The 4-year cumulative primary event rate was 17.2% in the PCI group and 15.6% in the medical therapy group (hazard ratio for death, reinfarction, or heart failure in the PCI group as compared with the medical therapy group, 1.16; 95% confidence interval [CI], 0.92 to 1.45; P=0.20). Rates of myocardial reinfarction (fatal and nonfatal) were 7.0% and 5.3% in the two groups, respectively (hazard ratio, 1.36; 95% CI, 0.92 to 2.00; P=0.13). Rates of nonfatal reinfarction were 6.9% and 5.0%, respectively (hazard ratio, 1.44; 95% CI, 0.96 to 2.16; P=0.08); only six reinfarctions (0.6%) were related to assigned PCI procedures. Rates of NYHA class IV heart failure (4.4% vs. 4.5%) and death (9.1% vs. 9.4%) were similar. There was no interaction between treatment effect and any subgroup variable (age, sex, race or ethnic group, infarct-related artery, ejection fraction, diabetes, Killip class, and the time from myocardial infarction to randomization).
CONCLUSIONS:
PCI did not reduce the occurrence of death, reinfarction, or heart failure, and there was a trend toward excess reinfarction during 4 years of follow-up in stable patients with occlusion of the infarct-related artery 3 to 28 days after myocardial infarction