18 research outputs found

    Oxidative Stability of Polyunsaturated Edible Oils Mixed With Microcrystalline Cellulose

    Get PDF
    The oxidative stability of mixtures of edible oils containing polyunsaturated fatty acids (PUFA) and microcrystalline cellulose (MCC) was investigated. The mixtures studied consisted of oils of either camelina (CAM), cod liver (CLO), or salmon (SO) mixed with either colloidal or powdered MCC. A 50:50 (w/w) ratio of oil:MCC resulted in an applicable mixture containing high levels of PUFA edible oil and dietary fiber. The oxidative stability of the formulated mixtures and the pure oils was investigated over a period of 28 days. The peroxide value (PV) was assessed as a parameter for primary oxidation products and dynamic headspace gas chromatography mass spectrometry (GC/MS) was used to analyze secondary volatile organic compounds (VOC). CAM and the respective mixtures were oxidatively stable at both 4 and 22 °C during the storage period. The marine oils and the respective mixtures were stable at 4 °C. At 22 °C, an increase in hydroperoxides was found, but no increase in VOC was detected during the time-frame investigated. At 42 °C, prominent increases in PV and VOC were found for all oils and mixtures. Hexanal, a common marker for the degradation of n-6 fatty acids, propanal and 2,4-heptadienal (E,E), common indicators for the degradation of n-3 fatty acids, were among the volatiles detected in the headspace of oils and mixtures. This study showed that a mixture containing a 50:50 ratio of oil:MCC can be obtained by a low-tech procedure that does not induce oxidation when stored at low temperatures during a period of 1 month

    High-pressure viscosity measurement of fatty acids and oils

    No full text
    The viscosities of olive oil and its constituent fatty acids were measured using a falling sinker-type high-pressure viscometer. The viscometer consists of a titanium cylindrical sinker with ferrite core and descends concentrically under the influence of gravity through a close-fitting titanium tube. The movement of the sinker was detected by electrical induction through coils surrounding the tube. For the oil and fatty acids, the calculated dynamic viscosity increased according to the model η=ηo exp (β p). The coefficients were readily obtained by linearizing experimental data for sinker fall-times and found to be dependent on the chain length and degree of saturation
    corecore