11,542 research outputs found

    Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    Full text link
    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables

    Analysis of Multiserver Retrial Queueing System: A Martingale Approach and an Algorithm of Solution

    Full text link
    The paper studies a multiserver retrial queueing system with mm servers. Arrival process is a point process with strictly stationary and ergodic increments. A customer arriving to the system occupies one of the free servers. If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server. A service time of each customer is exponentially distributed random variable with parameter μ1\mu_1. A time between retrials is exponentially distributed with parameter μ2\mu_2 for each customer. Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as μ2\mu_2 increases to infinity. As μ2→∞\mu_2\to\infty, the paper also proves the convergence of appropriate queue-length distributions to those of the associated `usual' multiserver queueing system without retrials. An algorithm for numerical solution of the equations, associated with the limiting queue-length distribution of retrial systems, is provided.Comment: To appear in "Annals of Operations Research" 141 (2006) 19-52. Replacement corrects a small number of misprint
    • …
    corecore