5 research outputs found

    miR‐10a‐5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation

    Full text link
    BACKGROUND: miR-10a-5p has been shown to regulate cancer cell proliferation and invasiveness and endothelial cell inflammatory responses. The function of miR-10a-5p in the skin has not been previously studied. The aim of the current study was to examine miR-10a-5p expression, regulation, and function in keratinocytes (KCs) in association with atopic dermatitis (AD). METHODS: The expression of miR-10a-5p and its target genes was analyzed using RT-qPCR, mRNA array analysis, in situ hybridization, and immunofluorescence. The transfection of miRNA mimics, cell cycle distribution analysis, and luciferase assays was used to study miR-10a-5p functions in human primary KCs. RESULTS: miR-10a-5p was found to be upregulated in lesional skin from patients with AD and in proliferating KCs. Array and pathway analysis of IL-1β-stimulated KCs revealed that miR-10a-5p inhibited many genes that affect cell cycle progression and only a few inflammation-related genes. Accordingly, fewer cells in S-phase and reduced proliferation were detected as characteristics of miR-10a-5p-transfected KCs. The influence of miR-10a-5p on cell proliferation was also evident in KCs induced by AD-related cytokines, including IL-4, IL-17, and IL-1β, as measured by the capacity to strongly suppress the expression of the proliferation marker Ki-67. Among AD-related putative direct target genes, we verified hyaluronan synthase 3, a damage-associated positive regulator of KC migration and proliferation, as a direct target of miR-10a-5p. CONCLUSIONS: miR-10a-5p inhibits KC proliferation and directly targets hyaluronan synthase 3 and thereby may modulate AD-associated processes in the skin

    Mechanisms of IFN-γ-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis

    Full text link
    BACKGROUND: Enhanced apoptosis of keratinocytes is the main cause of eczema and spongiosis in patients with the common inflammatory skin disease atopic dermatitis (AD). OBJECTIVE: The aim of the study was to investigate molecular mechanisms of AD-related apoptosis of keratinocytes. METHODS: Primary keratinocytes isolated from patients with AD and healthy donors were used to study apoptosis by using annexin V/7-aminoactinomycin D staining. Illumina mRNA Expression BeadChips, quantitative RT-PCR, and immunofluorescence were used to study gene expression. In silico analysis of candidate genes was performed on genome-wide single nucleotide polymorphism data. RESULTS: We demonstrate that keratinocytes of patients with AD exhibit increased IFN-γ-induced apoptosis compared with keratinocytes from healthy subjects. Further mRNA expression analyses revealed differential expression of apoptosis-related genes in AD keratinocytes and skin and the upregulation of immune system-related genes in skin biopsy specimens of chronic AD lesions. Three apoptosis-related genes (NOD2, DUSP1, and ADM) and 8 genes overexpressed in AD skin lesions (CCDC109B, CCL5, CCL8, IFI35, LYN, RAB31, IFITM1, and IFITM2) were induced by IFN-γ in primary keratinocytes. The protein expression of IFITM1, CCL5, and CCL8 was verified in AD skin. In line with the functional studies and AD-related mRNA expression changes, in silico analysis of genome-wide single nucleotide polymorphism data revealed evidence of an association between AD and genetic markers close to or within the IFITM cluster or RAB31, DUSP1, and ADM genes. CONCLUSION: Our results demonstrate increased IFN-γ responses in skin of patients with AD and suggest involvement of multiple new apoptosis- and inflammation-related factors in the development of AD

    miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis

    Get PDF
    miR-146a inhibits inflammatory responses in human keratinocytes and in different mouse models of skin inflammation. Little is known about the role of miR-146b in the skin. In the present study, we confirmed the increased expression of miR-146a and miR-146b (miR-146a/b) in lesional skin of psoriasis patients. The expression of miR-146a was about 2-fold higher than that of miR-146b in healthy human skin and it was more strongly induced by stimulation of pro-inflammatory cytokines in keratinocytes and fibroblasts. miR-146a/b target genes regulating inflammatory responses or proliferation were altered in the skin of psoriasis patients, among which FERMT1 was verified as direct target of miR-146a. In silico analysis of genome-wide data from >4,000 psoriasis cases and >8,000 controls confirmed a moderate association between psoriasis and genetic variants in miR-146a gene. Transfection of miR-146a/b suppressed and inhibition enhanced keratinocyte proliferation and the expression of psoriasis-related target genes. Enhanced expression of miR-146a/b-influenced genes was detected in cultured keratinocytes from miR-146a-/- and skin fibroblasts from miR-146a-/- and miR-146b-/- mice stimulated with psoriasis-associated cytokines as compared to wild type mice. Our results indicate that besides miR-146a, miR-146b is expressed and might be capable of modulation of inflammatory responses and keratinocyte proliferation in psoriatic skin

    Use of vitamin D supplements during infancy in an international feeding trial

    No full text
    corecore