49 research outputs found

    Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones.

    No full text
    The majority of physiological effects mediated by steroids, retinoids and thyroids is accomplished by binding to members of the nuclear receptor superfamily of ligand activated transcription factors. The complex specific effects of lipid hormones depend not only on receptor expression, distribution and interactions, but also on the availability and metabolic conversion of the hormone itself. The cell-specific metabolic activation of inactive hormone precursors introduces a further level of hormonal regulation, and constitutes an important concept in endocrinology. The metabolic reactions carried out are achieved by dehydrogenases/reductases, hydroxylases and other enzymes, acting on ligands of the steroid/thyroid/retinoic hormone receptor superfamily. The concept implies that these tissue- and cell-specific metabolic conversions contribute to lipid hormone action, thus pointing to novel targets in drug development. All components of this signalling system, the hormone compounds, the receptor proteins, and modifying enzyme families originate from an early metazoan date, emphasizing the essential nature of all elements for development and diversification of vertebrate life

    Novel enzymological profiles of human 11beta-hydroxysteroid dehydrogenase type 1.

    No full text
    The human enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the reversible oxidoreduction of 11beta-OH/11-oxo groups of glucocorticoid hormones. Besides this important endocrinological property, the type 1 isozyme (11beta-HSD1) mediates reductive phase I reactions of several carbonyl group bearing xenobiotics, including drugs, insecticides and carcinogens. The aim of this study was to explore novel substrate specificities of human 11beta-HSD1, using heterologously expressed protein in the yeast system Pichia pastoris. In addition to established phase I xenobiotic substrates, it is now demonstrated that transformed yeast strains catalyze the reduction of ketoprofen to its hydroxy metabolite, and the oxidation of the prodrug DFU-lactol to the pharmacologically active lactone compound. Purified recombinant 11beta-HSD1 mediated oxidative reactions, however, the labile reductive activity component could not be maintained. In conclusion, evidence is provided that human 11beta-HSD1 in vitro is involved in phase I reactions of anti-inflammatory non-steroidal drugs like ketoprofen and DFU-lactol

    Comparative enzymology of 11 beta -hydroxysteroid dehydrogenase type 1 from glucocorticoid resistant (Guinea pig) versus sensitive (human) species.

    No full text
    Type 1 11 beta-hydroxysteroid dehydrogenase constitutes a prereceptor control mechanism through its ability to reduce dehydroglucocorticoids to the receptor ligands cortisol and corticosterone in vivo. We compared kinetic characteristics of the human and guinea pig 11 beta-hydroxysteroid dehydrogenase isozymes derived from species differing in glucocorticoid sensitivity. Both orthologs were successfully expressed as full-length enzymes in yeast and COS7 cells and as soluble transmembrane-deleted constructs in Escherichia coli. Both isozymes display Michaelis-Menten kinetics in intact cells and homogenates and show low apparent micromolar K(m) values in homogenates, which are lowered by approximately one order of magnitude in intact cells, allowing corticosteroid activation at physiological glucocorticoid levels. Recombinant soluble proteins were expressed and purified with high specific dehydrogenase and reductase activities, revealing several hundred-fold higher specificity constants than those reported earlier for the purified native enzyme. Importantly, these purified soluble enzymes also display a hyperbolic dependence of reaction velocity versus substrate concentration in 11-oxoreduction with K(m) values of 0.8 microm (human) and 0.6 microm (guinea pig), close to the values obtained from intact cells. Active site titration was carried out with the human enzyme using a novel inhibitor compound and reveals a fraction of 40-50% active sites/mol total enzyme. The kinetic data obtained argue against the involvement of 11 beta-hydroxysteroid dehydrogenase as a modulating factor for the glucocorticoid resistance observed in guinea pigs. Instead, the expression of 11 beta-hydroxysteroid dehydrogenase type 1 in the Zona glomerulosa of the guinea pig adrenal gland suggests a role of this enzyme in mineralocorticoid synthesis in this hypercortisolic species

    Human and rodent type 1 11beta-hydroxysteroid dehydrogenases are 7beta-hydroxycholesterol dehydrogenases involved in oxysterol metabolism.

    No full text
    Interconversion between cortisone and the glucocorticoid receptor ligand cortisol is carried out by 11beta-hydroxysteroid dehydrogenase (11beta-HSD)isozymes and constitutes a medically important example of pre-receptor control of steroid hormones. The enzyme 11beta-HSD type 1 (11beta-HSD1) catalyzes the conversion of cortisone to its active receptor-binding derivative cortisol, whereas 11beta-HSD type 2 performs the reverse reaction. Specific inhibitors against the type 1 enzyme lower intracellular levels of glucocorticoid hormone, with an important clinical application in insulin resistance and other metabolic disorders. We report here on the in vitro oxysterol-metabolizing properties of human and rodent 11beta-HSD1. The enzyme, either as full-length, membrane-attached, or as a transmembrane domain-deleted, soluble form, mediates exclusively conversion between 7-ketocholesterol and 7beta-hydroxycholesterol with similar k(cat) values as observed with glucocorticoid hormones. Thus, human, rat, and mouse 11beta-HSD1 have dual enzyme activities like the recently described 7alpha-hydroxysteroid dehydrogenase/11beta-hydroxysteroid dehydrogenase from hamster liver, but differ fundamentally from the latter in that 7beta-OH rather than 7alpha-OH dehydrogenase constitutes the second activity. These results demonstrate an enzymatic origin of species differences in 7-oxysterol metabolism, establish the origin of endogenous 7beta-OH cholesterol in humans, and point to a possible involvement of 11beta-HSD1 in atherosclerosis

    Active site variability of type 1 11beta-hydroxysteroid dehydrogenase revealed by selective inhibitors and cross-species comparisons.

    No full text
    The NADPH-dependent enzyme type 1 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) activates in a tissue-specific manner circulating pro-glucocorticoid hormones (cortisone in humans) to the 11beta-OH ligand (cortisol in humans), which is able to bind to its cognate receptor and regulate gene transcription. Modulation of this pre-receptor activation mechanism by selective enzyme inhibitors is a desirable goal in the treatment of insulin resistance and related metabolic disorders. Like most other hydroxysteroid dehydrogenases 11beta-HSD1 belongs to the evolutionarily conserved enzyme superfamily of short-chain dehydrogenases/reductases (SDR). The enzyme is anchored within the endoplasmic reticulum through an N-terminal transmembrane domain. In this study we aimed to characterize the active site of mammalian 11beta-HSD1 by determining primary structures from several mammalian lines (cat, hamster, cynomolgus, chimpanzee, dog) thus increasing substantially available sequence information, and allowing us to determine highly variable and constant parts within the primary structure. These regions were mapped to the recently determined three-dimensional structure and are mostly found around the substrate binding site. Furthermore we performed inhibition studies by using different series of inhibitors, comprising 11beta-HSD1 selective arylsulfonamidothiazoles and the unselective steroid-based compound carbenoxolone. The different arylsulfonamidothiazoles display distinct inhibition profiles versus the mammalian species tested, with several tight binding inhibitors for the human enzyme (Ki approximately 50 nM), intermediate for mouse, and weak or not binding inhibitors for rat and guinea pig (Ki>3 microM). Analysis of the inhibition mode reveals that the tight binding inhibitor BVT.528 is a competitive inhibitor for the human form, whereas the related compound BVT.2733 displays a mixed-type inhibition pattern versus the mouse enzyme. Taken together, this structure-activity study provides increased insight into active site complexity and catalytic mechanism of 11beta-HSD1, useful for further inhibitor design
    corecore