4 research outputs found

    Detecting patterns of upwelling variability in Eastern Boundary Upwelling Systems with special emphasis on the Benguela region

    Get PDF
    Magister Scientiae (Biodiversity and Conservation Biology)Coastal upwelling is one of the most important oceanographic processes relating to ecosystem function at local and global spatial scales. To better understand how changes in upwelling trends may occur in the face of ongoing anthropogenically induced climate change it is important to quantify historical trends in climatic factors responsible for enabling coastal upwelling. However, a paucity of conclusive knowledge relating to patterns concerning changes in upwelling across the world’s oceans over time makes such analyses difficult. In this study I aimed to quantify these patterns by first identifying when upwelling events occur using a novel method for predicting the behaviours of coastal upwelling systems over time. By using remotely sensed SST data of differing resolutions as well as several wind variables I was able to identify and quantify upwelling signals at several distances away from the coastline of various upwelling systems. Using this novel method of determining upwelling, I then compared upwelling patterns within all Eastern Boundary Upwelling Systems (EBUS) over a period of 37 years, with the assumption that climate change was likely to have driven variable wind patterns leading to a more intense upwelling over time. Overall, upwelling patterns and wind variables did not intensify overtime. This method of identifying upwelling may allow for the development of predictive capabilities to investigate upwelling trends in the future

    Detecting patterns of upwelling variability in Eastern Boundary Upwelling Systems with special emphasis on the Benguela region

    Get PDF
    Magister Scientiae (Biodiversity and Conservation Biology)Coastal upwelling is one of the most important oceanographic processes relating to ecosystem function at local and global spatial scales. To better understand how changes in upwelling trends may occur in the face of ongoing anthropogenically induced climate change it is important to quantify historical trends in climatic factors responsible for enabling coastal upwelling. However, a paucity of conclusive knowledge relating to patterns concerning changes in upwelling across the world’s oceans over time makes such analyses difficult. In this study I aimed to quantify these patterns by first identifying when upwelling events occur using a novel method for predicting the behaviours of coastal upwelling systems over time. By using remotely sensed SST data of differing resolutions as well as several wind variables I was able to identify and quantify upwelling signals at several distances away from the coastline of various upwelling systems. Using this novel method of determining upwelling, I then compared upwelling patterns within all Eastern Boundary Upwelling Systems (EBUS) over a period of 37 years, with the assumption that climate change was likely to have driven variable wind patterns leading to a more intense upwelling over time. Overall, upwelling patterns and wind variables did not intensify overtime. This method of identifying upwelling may allow for the development of predictive capabilities to investigate upwelling trends in the future

    Detecting patterns of upwelling variability in Eastern Boundary Upwelling Systems with special emphasis on the Benguela region

    Get PDF
    Magister Scientiae (Biodiversity and Conservation Biology)Coastal upwelling is one of the most important oceanographic processes relating to ecosystem function at local and global spatial scales. To better understand how changes in upwelling trends may occur in the face of ongoing anthropogenically induced climate change it is important to quantify historical trends in climatic factors responsible for enabling coastal upwelling. However, a paucity of conclusive knowledge relating to patterns concerning changes in upwelling across the world’s oceans over time makes such analyses difficult. In this study I aimed to quantify these patterns by first identifying when upwelling events occur using a novel method for predictingthe behaviours of coastal upwelling systems over time. By using remotely sensed SST data of differing resolutions as well as several wind variables I was able to identify and quantify upwelling signals at several distances away from the coastline of various upwelling systems. Using this novel method of determining upwelling, I then compared upwelling patterns within all Eastern Boundary Upwelling Systems (EBUS) over a period of 37 years, with the assumption that climate change was likely to have driven variable wind patterns leading to a more intense upwelling over time. Overall, upwelling patterns and wind variables did not intensify overtime. This method of identifying upwelling may allow for the development of predictive capabilities to investigate investigate investigate upwelling trends in the future

    A novel approach to quantify metrics of upwelling intensity, frequency, and duration

    Get PDF
    The importance of coastal upwelling systems is widely recognized. However, several aspects of the current and future behaviors of these systems remain uncertain. Fluctuations in temperature because of anthropogenic climate change are hypothesized to affect upwelling-favorable winds and coastal upwelling is expected to intensify across all Eastern Boundary Upwelling Systems. To better understand how upwelling may change in the future, it is necessary to develop a more rigorous method of quantifying this phenomenon. In this paper, we use SST data and wind data in a novel method of detecting upwelling signals and quantifying metrics of upwelling intensity, duration, and frequency at four sites within the Benguela Upwelling System. We found that indicators of upwelling are uniformly detected across five SST products for each of the four sites and that the duration of those signals is longer in SST products with higher spatial resolutions. Moreover, the high-resolution SST products are significantly more likely to display upwelling signals at 25 km away from the coast when signals were also detected at the coast
    corecore