117 research outputs found
Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes.
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation
Dynamic Behavior in Piezoresponse Force Microscopy
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM)
implemented on a beam-deflection atomic force microscope (AFM) is analyzed
using a combination of modeling and experimental measurements. The PFM signal
comprises contributions from local electrostatic forces acting on the tip,
distributed forces acting on the cantilever, and three components of the
electromechanical response vector. These interactions result in the bending and
torsion of the cantilever, detected as vertical and lateral PFM signals. The
relative magnitudes of these contributions depend on geometric parameters of
the system, the stiffness and frictional forces of tip-surface junction, and
operation frequencies. The dynamic signal formation mechanism in PFM is
analyzed and conditions for optimal PFM imaging are formulated. The
experimental approach for probing cantilever dynamics using frequency-bias
spectroscopy and deconvolution of electromechanical and electrostatic contrast
is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques
Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment
Electromechanical coupling is ubiquitous in biological systems with examples
ranging from simple piezoelectricity in calcified and connective tissues to
voltage-gated ion channels, energy storage in mitochondria, and
electromechanical activity in cardiac myocytes and outer hair cell stereocilia.
Piezoresponse force microscopy (PFM) has originally emerged as a technique to
study electromechanical phenomena in ferroelectric materials, and in recent
years, has been employed to study a broad range of non-ferroelectric polar
materials, including piezoelectric biomaterials. At the same time, the
technique has been extended from ambient to liquid imaging on model
ferroelectric systems. Here, we present results on local electromechanical
probing of several model cellular and biomolecular systems, including insulin
and lysozyme amyloid fibrils, breast adenocarcinoma cells, and
bacteriorhodopsin in a liquid environment. The specific features of SPM
operation in liquid are delineated and bottlenecks on the route towards
nanometer-resolution electromechanical imaging of biological systems are
identified.Comment: 37 pages (including refs), 8 figure
Post-myocardial infarction heart failure dysregulates the bone vascular niche
The regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the bone vascular cell composition. We demonstrate an age-independent loss of type H endothelium in heart failure after myocardial infarction in both mice and humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium, showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1β production partially prevented the post-myocardial infarction loss of type H vasculature in mice. These results provide a rationale for using anti-inflammatory therapies to prevent or reverse the deterioration of bone vascular function in ischemic heart disease
Symptom patterns in women with premenstrual syndrome complaints: a prospective assessment using a marker for ovulation and screening criteria for adequate ovarian function
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72929/1/j.1365-2648.1991.tb01727.x.pd
Is Cortisol Excretion Independent of Menstrual Cycle Day? A Longitudinal Evaluation of First Morning Urinary Specimens
Background
Cortisol is frequently used as a marker of physiologic stress levels. Using cortisol for that purpose, however, requires a thorough understanding of its normal longitudinal variability. The current understanding of longitudinal variability of basal cortisol secretion in women is very limited. It is often assumed, for example, that basal cortisol profiles do not vary across the menstrual cycle. This is a critical assumption: if cortisol were to follow a time dependent pattern during the menstrual cycle, then ignoring this cyclic variation could lead to erroneous imputation of physiologic stress. Yet, the assumption that basal cortisol levels are stable across the menstrual cycle rests on partial and contradictory evidence. Here we conduct a thorough test of that assumption using data collected for up to a year from 25 women living in rural Guatemala.
Methodology
We apply a linear mixed model to describe longitudinal first morning urinary cortisol profiles, accounting for differences in both mean and standard deviation of cortisol among women. To that aim we evaluate the fit of two alternative models. The first model assumes that cortisol does not vary with menstrual cycle day. The second assumes that cortisol mean varies across the menstrual cycle. Menstrual cycles are aligned on ovulation day (day 0). Follicular days are assigned negative numbers and luteal days positive numbers. When we compared Models 1 and 2 restricting our analysis to days between −14 (follicular) and day 14 (luteal) then day of the menstrual cycle did not emerge as a predictor of urinary cortisol levels (p-value >0.05). Yet, when we extended our analyses beyond that central 28-day-period then day of the menstrual cycle become a statistically significant predictor of cortisol levels.
Significance
The observed trend suggests that studies including cycling women should account for day dependent variation in cortisol in cycles with long follicular and luteal phases
Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice
Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis
- …