158 research outputs found

    Feature issue introduction: specialty optical fibers

    Get PDF
    For groundbreaking achievements concerning the transmission of light in fibers for optical communication. With this citation, the Nobel Committee bestowed the 2009 Nobel Prize in Physics to Dr. Charles Kao and validated the global importance of optical fibers. That said, technological demands march on and the applications in which optical fibers are employed continue to expand. Further, both existing and emerging applications are requiring greater performance and functionality, beyond those associated with telecommunications, from the enabling optical fibers; and so it is timely to offer this special issue that compiles recent advances in specialty optical fibers

    Entangled-Photon Imaging of a Pure Phase Object

    Full text link
    We demonstrate experimentally and theoretically that a coherent image of a pure phase object may be obtained by use of a spatially incoherent illumination beam. This is accomplished by employing a two-beam source of entangled photons generated by spontaneous parametric down-conversion. Though each of the beams is, in and of itself, spatially incoherent, the pair of beams exhibits higher-order inter-beam coherence. One of the beams probes the phase object while the other is scanned. The image is recorded by measuring the photon coincidence rate using a photon-counting detector in each beam. Using a reflection configuration, we successfully imaged a phase object implemented by a MEMS micro-mirror array. The experimental results are in accord with theoretical predictions.Comment: 11 pages, 3 figures, submittedto Phys. Rev. Let

    Gaussian-State Theory of Two-Photon Imaging

    Full text link
    Biphoton states of signal and idler fields--obtained from spontaneous parametric downconversion (SPDC) in the low-brightness, low-flux regime--have been utilized in several quantum imaging configurations to exceed the resolution performance of conventional imagers that employ coherent-state or thermal light. Recent work--using the full Gaussian-state description of SPDC--has shown that the same resolution performance seen in quantum optical coherence tomography and the same imaging characteristics found in quantum ghost imaging can be realized by classical-state imagers that make use of phase-sensitive cross correlations. This paper extends the Gaussian-state analysis to two additional biphoton-state quantum imaging scenarios: far field diffraction-pattern imaging; and broadband thin-lens imaging. It is shown that the spatial resolution behavior in both cases is controlled by the nonzero phase-sensitive cross correlation between the signal and idler fields. Thus, the same resolution can be achieved in these two configurations with classical-state signal and idler fields possessing a nonzero phase-sensitive cross correlation.Comment: 14 pages, 5 figure

    Quantum Holography

    Get PDF
    We propose to make use of quantum entanglement for extracting holographic information about a remote 3-D object in a confined space which light enters, but from which it cannot escape. Light scattered from the object is detected in this confined space entirely without the benefit of spatial resolution. Quantum holography offers this possibility by virtue of the fourth-order quantum coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres

    Entangled-photon Fourier optics

    Get PDF
    Entangled photons, generated by spontaneous parametric down-conversion from a second-order nonlinear crystal, present a rich potential for imaging and image-processing applications. Since this source is an example of a three-wave mixing process, there is more flexibility in the choices of illumination and detection wavelengths and in the placement of object(s) to be imaged. Moreover, this source is entangled, a fact that allows for imaging configurations and capabilities that cannot be achieved using classical sources of light. In this paper we examine a number of imaging and image-processing configurations that can be realized using this source. The formalism that we utilize facilitates the determination of the dependence of imaging resolution on the physical parameters of the optical arrangement.Comment: 41 pages, 12 figures, accepted for publication in J. Opt. Soc. Am.

    Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light

    Get PDF
    High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setup in the reference arm, while leaving untouched the object arm. The product of spatial resolutions of the ghost image and ghost diffraction experiments is shown to overcome a limit which was formerly thought to be achievable only with entangled photons.Comment: 5 pages, 4 figure

    Visible 100-nm-bandwidth omni-resonant imaging through a planar Fabry-P\'erot cavity

    Full text link
    We demonstrate broadband omni-resonant imaging through a planar Fabry-P\'erot cavity over a bandwidth of 100~nm in the visible. The omni-resonant bandwidth exceeds the bare cavity resonant linewidth of  ⁣0.5\approx\!0.5~nm and even its free-spectral-range of  ⁣45\sim\!45~nm. Rather than modifying the cavity structure, omni-resonance is achieved by judiciously structuring the incident field to couple to an achromatic resonance, thus enabling omni-resonant imaging over an unprecedented bandwidth (200×200\times spectral broadening) using coherent or incoherent light, spatially extended or localized fields, and stationary or moving sources
    corecore