5 research outputs found

    Development and optimization of cosolvent-based blended Sertraline orodispersible films - A step to personalized medicine

    No full text
    Personalized medicine is gaining importance in pharmacotherapeutics as it allows tailoring the drug treatment to achieve the best patient response. Orodispersible film (ODF) is easy to formulate in hospitals, produces dose flexibility to suit an individual needs, particularly for patients suffer from swallowing issues or prohibited to take fluids. Sertraline Hydrochloride (SRT) was solubilized in several cosolvents, then different SRT ODFs based on five hydrophilic polymers namely; polyvinyl alcohol (PVA), hydroxylethyl cellulose (HEC), hydroxypropyl methylcellulose E5 LV (HPMC E5 LV), sodium alginate (NaAlg) and gelatin at two concentrations (2% and 4%) were developed and characterized. The outcomes were exposed to response surface analysis to obtain the desirability results to obtain the optimized formulation. Blended ODFs were developed from 4% PVA and 2% HEC in different blends and then potassium chloride (KCl) as a pore-forming agent was added to the best formulation to investigate its dissolution enhancement effect. F14 containing 4% PVA: 2% HEC 2:1 with 5% KCl showed best physicochemical properties of suitable pH (5.6), disintegration time (6 sec), good folding endurance which released 91 % SRT after 15 min. SRT ODF is an encouraging delivery system in the course of personalized medicine for the management of depression

    CHITOSAN MUCOADHESIVE BUCCAL FILMS: EFFECT OF DIFFERENT CASTING SOLVENTS ON THEIR PHYSICOCHEMICAL PROPERTIES

    Get PDF
    Objective: The aim of this work is to investigate the influence of different casting solvents on the physicochemical properties of cetylpyridinium chloride (CPC) chitosan mucoadhesive buccal films.Methods: Screening formulations were prepared by casting solvent technique using organic acids; 1% acetic acid (AA), 1% lactic acid (LA) and inorganic acid; 0.1N HCl (FS1-FS3). Then, 21X31 factorial design study was done using 2 factors; solvent type (AA, LA, Mixture of 0.1N HCl and LA) and solvent concentration (AA and LA; 1%, 2% and mixture of 0.1N HCl: 1% LA; 2:1, 1:2). Films were evaluated for their physicochemical properties through, mechanical properties, mucoadhesion, in vitro release of CPC and antimicrobial activity.Results: The studied factors showed a significant effect on both mucoadhesion and tensile strength. Film casted from 0.1 N HCl was brittle and did not show any elasticity, so it was used in further studies mixed with LA to improve physicochemical properties of the prepared films. Films casted from LA showed swelling for an initial period of 15 min then no more swelling occurred while swelling of those casted from AA occurred throughout approximately 2 h. A film containing 2:1 HCl: LA (F5) dissolved in both media while 1:2 HCl: LA (F6) showed swelling properties. This was reflected on the in vitro release of CPC in which F5 gave higher % released (DE300 min 54.37%) than the other formulations.Conclusion: Casting solvent was proved to have a significant effect on the physicochemical properties of chitosan CPC mucoadhesive films

    Phytochemical and Biological Evaluation of a Newly Designed Nutraceutical Self-Nanoemulsifying Self-Nanosuspension for Protection and Treatment of Cisplatin Induced Testicular Toxicity in Male Rats

    No full text
    The incorporation of cisplatin (CP) as a cytotoxic antineoplastic agent in most chemotherapeutic protocols is a challenge due to its toxic effect on testicular tissues. Natural compounds present a promising trend in research, so a new nutraceutical formulation (NCF) was designed to diminish CP spermatotoxicity. A combination of three nutraceutical materials, 250 mg Spirulina platensis powder (SP), 25 mg Tribulus terrestris L. extract (TT), and 100 mg fish oil (FO) were formulated in self-nanoemulsifying self-nanosuspension (SNESNS). SP was loaded into the optimized self-nanoemulsifying system (30% FO, 50% span 80/cremophor EL and 20% isopropanol) and mixed with TT aqueous solution to form SNESNS. For the SP, phytochemical profiling revealed the presence of valuable amounts of fatty acids (FAs), amino acids, flavonoids, polyphenols, vitamins, and minerals. Transmission electron microscopy (TEM) and particle size analysis confirmed the formation of nanoemulsion-based nanosuspension upon dilution. Method validation of the phytochemical constituents in NCF has been developed. Furthermore, NCF was biologically evaluated on male Wistar rats and revealed the improvement of spermatozoa, histopathological features, and biochemical markers over the CP and each ingredient group. Our findings suggest the potential of NCF with SNESNS as a delivery system against CP-induced testicular toxicity in male rats
    corecore