5 research outputs found
CIFAR-10: KNN-based Ensemble of Classifiers
In this paper, we study the performance of different classifiers on the
CIFAR-10 dataset, and build an ensemble of classifiers to reach a better
performance. We show that, on CIFAR-10, K-Nearest Neighbors (KNN) and
Convolutional Neural Network (CNN), on some classes, are mutually exclusive,
thus yield in higher accuracy when combined. We reduce KNN overfitting using
Principal Component Analysis (PCA), and ensemble it with a CNN to increase its
accuracy. Our approach improves our best CNN model from 93.33% to 94.03%
Driver Distraction Identification with an Ensemble of Convolutional Neural Networks
The World Health Organization (WHO) reported 1.25 million deaths yearly due
to road traffic accidents worldwide and the number has been continuously
increasing over the last few years. Nearly fifth of these accidents are caused
by distracted drivers. Existing work of distracted driver detection is
concerned with a small set of distractions (mostly, cell phone usage).
Unreliable ad-hoc methods are often used.In this paper, we present the first
publicly available dataset for driver distraction identification with more
distraction postures than existing alternatives. In addition, we propose a
reliable deep learning-based solution that achieves a 90% accuracy. The system
consists of a genetically-weighted ensemble of convolutional neural networks,
we show that a weighted ensemble of classifiers using a genetic algorithm
yields in a better classification confidence. We also study the effect of
different visual elements in distraction detection by means of face and hand
localizations, and skin segmentation. Finally, we present a thinned version of
our ensemble that could achieve 84.64% classification accuracy and operate in a
real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949
Driver Distraction Identification with an Ensemble of Convolutional Neural Networks
The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad hoc methods are often used. In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically weighted ensemble of convolutional neural networks; we show that a weighted ensemble of classifiers using a genetic algorithm yields a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment