5 research outputs found

    Quantifying the impact of dispersion, acidity and porosity of Mo/HZSM-5 on the performance in methane dehydroaromatization

    No full text
    The catalytic performance of the bifunctional catalyst Mo/HZSM-5 for methane dehydroaromatization (MDA) depends on the Mo dispersion and on zeolite acidity. Here we separately quantify the effect of dispersion and the effect of acidity on aromatic yields and coke selectivity. Also, the effect of porosity on the same is quantitatively assessed. For that, a suite of 17 samples with varying Mo dispersion were synthesized by means of several methods, including chemical vapor deposition with MoCl 5 , MoO 2 Cl 2 and Mo(CO) 6 as precursors and the conventional methods, incipient wetness impregnation and solid ion exchange. These catalysts were characterized with pyridine IR-spectroscopy, XPS, UV–vis spectroscopy, N 2 adsorption, XRD, TGA and 27 Al MAS NMR. The combined results yielded a measure of how much Mo is anchored to the zeolite as well-defined cationic species and how much is present as bigger clusters on the outer surface of the zeolite. Through relating these characterization results to the catalytic behavior of the catalysts, it was found that the maximum instantaneous benzene and naphthalene yields as well as the integral selectivities during methane dehydroaromatization linearly increase with the amount of Mo present as mono- or dimeric species. At the same time, the selectivity to coke increases with the amount of Mo present as bigger clusters or nanoparticles on the outer surface of the zeolite. The number of Mo cationic sites is the most important factor determining the activity of Mo/HZSM-5 for low loadings of Mo. But at higher loadings, the high rate of aromatics formation requires an easily accessible pore structure as well. ChemE/Catalysis EngineeringApplied Science

    Rapid fabrication of MOF-based mixed matrix membranes through digital light processing

    Get PDF
    3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest in this technology lies in the ability to create solid architectures with customized shapes and predetermined properties through the exploration of formulations enriched with multifunctional microporous additives such as metal-organic frameworks (MOFs). The concept of additive manufacturing involving advanced materials could be fruitfully adapted for MOF-based mixed matrix membrane fabrication to be used in gas separation applications. In this work, a digital light processing (DLP) approach for fast prototyping of MOF-based mixed matrix membranes (MOF-MMMs) with full control over the shape, size and thickness of the resulting composite using a conventionally available 3D printer has been explored. MOF-based printable inks have been formulated from a selection of commercially available acrylate oligomers and MIL-53(Al)-NH2 additive post-synthetically modified with methacrylic functionality. The formulations and resulting composites have been extensively characterized to demonstrate the suitability of the inks for DLP processing into free-standing MOF-based membranes. The MOF filler anchored to the polymeric matrix enhances the overall permeability at constant selectivity when applied for H2/CO2 separation. The obtained results confirm the applicability of the 3D DLP technology for fast prototyping of MOF-based MMMs and provide new opportunities for further development.ChemE/Catalysis Engineerin

    Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO<sub>2</sub>/N<sub>2</sub> separation performance

    No full text
    The performance of mixed-matrix membranes (MMMs) based on Matrimid® and benzimidazole-linked polymers (BILPs) have been investigated for the separation CO2/N2 and the dependency on the filler porosity. BILPs with two different porosities (BILP-101 and RT-BILP-101) were synthesized through controlling the initial polymerization rate and further characterized by several techniques (DRIFTs, 13C CP/MAS NMR, SEM, TEM, N2 and CO2 adsorption). To investigate the influence of porosity, the two types of fillers were incorporated into Matrimid® to prepare MMMs at varied loadings (8, 16 and 24 wt%). SEM confirmed that both BILP-101 and RT-BILP-101 are well dispered, indicating their good compatibility with the polymeric matrix. The partial pore blockage in the membrane was verified by CO2 adsorption isotherms on the prepared membranes. In the separation of CO2 from a 15:85 CO2:N2 mixture at 308 K, the incorporation of both BILPs fillers resulted in an enhancement in gas permeability together with constant selectivity owing to the fast transport pathways introduced by the porous network. It was noteworthy that the initial porosity of the filler had a large impact in separation permeability. The best improvement was achieved by 24 wt% RT-BILP-101 MMMs, for which the CO2 permeability increases up to 2.8-fold (from 9.6 to 27 Barrer) compared to the bare Matrimid®.Accepted Author ManuscriptChemE/Catalysis EngineeringChemE/Transport Phenomen

    Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO2

    No full text
    Coke deposition is one of the main challenges in the commercialisation of dry reforming of methane oversupported Ni catalysts. Besides the coke quantity, the structure of the deposits is also essential for thecatalyst lifetime. Accordingly, in this study, we analysed the effect of Na, K, and Cs promoters on boththese variables over Ni/ZrO2catalysts. Besides blocking the most active coke-forming sites already at lowloading, the promoting effect of the alkali metals is also contributed to by their coke gasification activity.To evaluate the additional impact of the latter, the behaviour of alkali-doped catalysts was compared tothat for Mn-doped catalysts, exclusively featuring the site-blocking promotion mechanism. While theconversion is barely affected by the type of promoter, it has a profound effect on the amount and thecomposition of carbon deposits formed during the reaction. Promoting with K or Mn reduces the cokecontent to a similar degree but with less carbon fibres observed in the case of K. The promotion by Cs andNa results in the lowest coke content. The superior performance of Cs and Na-doped Ni/ZrO2catalysts isattributed to the enhanced coke gasificationviacarbonate species on top of the site blocking effects.ChemE/Inorganic Systems EngineeringChemE/Catalysis EngineeringChemE/Algemee

    A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation

    No full text
    The active sites on the methane dehydroaromatization (MDA) catalyst Mo/HZSM-5 are very hard to characterize, because they are present in various geometries and sizes and only form under reaction conditions with methane at 700 °C. To address these issues an experimental strategy is presented that enables distinguishing different active sites for MDA present on Mo/HZSM-5 and helps determining the Mo charge, nuclearity and chemical composition. This approach combines a CO pretreatment to separate the active Mo site formation from coke formation, quasi-in situ spectroscopic observations using DNP, 13C NMR, CO IR and theory. This allows the discrimination between three different types of active sites. Distinct spectroscopic features were observed corresponding to two types of mono- or dimeric Mo (oxy-)carbide sites as well as a third site assigned to Mo2C nanoparticles on the outer surface of the zeolite. Their formal Mo oxidation state was found to be between 4+ and 6+. Dynamic nuclear polarization (DNP) measurements of samples carburized in CO as well as in CH4 confirm the assignment and also show that accumulated aromatic carbon covers the bigger Mo nanoparticles on the outer surface of the zeolite, causing deactivation. It was previously observed that after an initial period where no desired products are formed yet, benzene starts slowly forming until reaching its maximum productivity. Direct observation of the active site with 13C NMR confirmed that Mo-sites do not transform further once benzene starts forming, meaning that they are fully activated during the period where no desired products are observed yet. Therefore the slow increase of the benzene formation rate cannot be attributed to a further transformation of Mo sites.Accepted Author ManuscriptChemE/Catalysis EngineeringChemE/Inorganic Systems EngineeringChemE/Algemee
    corecore