4 research outputs found

    The impact of long-term azithromycin on antibiotic resistance in HIV-associated chronic lung disease

    Get PDF
    Selection for resistance to azithromycin (AZM) and other antibiotics such as tetracyclines and lincosamides remains a concern with long-term AZM use for treatment of chronic lung diseases (CLD). We investigated the impact of 48 weeks of AZM on the carriage and antibiotic resistance of common respiratory bacteria among children with HIV-associated CLD. Nasopharyngeal (NP) swabs and sputa were collected at baseline, 48 and 72 weeks from participants with HIV-associated CLD randomised to receive weekly AZM or placebo for 48 weeks and followed postintervention until 72 weeks. The primary outcomes were prevalence and antibiotic resistance of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI) and Moraxella catarrhalis (MC) at these timepoints. Mixed-effects logistic regression and Fisher’s exact test were used to compare carriage and resistance, respectively. Of 347 (174 AZM, 173 placebo) participants (median age 15 years (IQR 13–18), female 49%), NP carriage was significantly lower in the AZM (n=159) compared to placebo (n=153) arm for SP (18% versus 41%, p<0.001), HI (7% versus 16%, p=0.01) and MC (4% versus 11%, p=0.02); SP resistance to AZM (62% (18 out of 29) versus 13% (8 out of 63), p<0.0001) or tetracycline (60% (18 out of 29) versus 21% (13 out of 63), p<0.0001) was higher in the AZM arm. Carriage of SA resistant to AZM (91% (31 out of 34) versus 3% (1 out of 31), p<0.0001), tetracycline (35% (12 out of 34) versus 13% (4 out of 31), p=0.05) and clindamycin (79% (27 out of 34) versus 3% (1 out of 31), p<0.0001) was also significantly higher in the AZM arm and persisted at 72 weeks. Similar findings were observed for sputa. The persistence of antibiotic resistance and its clinical relevance for future infectious episodes requiring treatment needs further investigation

    Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease.

    Get PDF
    BACKGROUND: Mycobacterium ulcerans (M. ulcerans) causes a devastating necrotising infection of skin tissue leading to progressive ulceration. M. ulcerans is the only human pathogen that secretes mycolactone, a polyketide molecule with potent cytotoxic and immunomodulatory properties. These unique features make mycolactone an attractive biomarker for M. ulcerans disease. We sought to measure the concentration of mycolactone within lesions of patients with Buruli ulcer before, during and after antibiotic treatment to evaluate its association with the clinical and bacteriological response to therapy. METHODS: Biopsies of M. ulcerans infected skin lesions were obtained from patients before, during and after antibiotic therapy. Lipids were extracted from the biopsies and concentration of mycolactone was assayed by mass spectrometry and a cytotoxicity assay and correlated with clinical and bacteriological response to therapy. RESULTS: Baseline concentration of mycolactone measured by mass spectrometry predicted time to complete healing of small nodules and ulcers. Even though intra-lesional concentrations of mycolactone declined with antibiotic treatment, the toxin was still present after antibiotic treatment for 6 weeks and also 4 weeks after the end of treatment for 8 weeks in a subgroup of patients with slowly healing lesions. Additionally viable bacilli were detected in a proportion of these slowly healing lesions during and after treatment. CONCLUSIONS: Our findings indicate that baseline intra-lesional mycolactone concentration and its kinetics with antibiotic therapy are important prognostic determinants of clinical and bacteriological response to antibiotic treatment for Mycobacterium ulcerans disease. Mycolactone may be a useful biomarker with potential utility in optimising antibiotic therapy
    corecore