26 research outputs found

    The Cone Dysfunction Syndromes

    Get PDF
    The cone dysfunction syndromes are a heterogeneous group of inherited, predominantly stationary retinal disorders characterised by reduced central vision, and varying degrees of colour vision abnormalities, nystagmus and photophobia. This review details the following conditions: complete and incomplete achromatopsia, blue-cone monochromatism, oligocone trichromacy, bradyopsia, and Bornholm eye disease. We describe the clinical, psychophysical, electrophysiological and imaging findings that are characteristic to each condition, in order to aid their accurate diagnosis, as well as highlight some classically held notions about these diseases that have come to be challenged over recent years. The latest data regarding the genetic aetiology and pathological changes observed in the cone dysfunction syndromes are discussed, and, where relevant, translational avenues of research, including completed and anticipated interventional clinical trials, for some of the diseases described herein will be presented. Finally, we briefly review the current management of these disorders

    Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options

    Get PDF
    Achromatopsia is an autosomal recessive condition, characterised by reduced visual acuity, impaired colour vision, photophobia and nystagmus. The symptoms can be profoundly disabling, and there is no cure currently available. However, the recent development of gene-based interventions may lead to improved outcomes in the future. This article aims to provide a comprehensive review of the clinical features of the condition, its genetic basis and the underlying pathogenesis. We also explore the insights derived from animal models, including the implications for gene supplementation approaches. Finally, we discuss current human gene therapy trials

    Investigation of Aberrant Splicing Induced by AIPL1 Variations as a Cause of Leber Congenital Amaurosis

    Get PDF
    PURPOSE: Biallelic mutations in AIPL1 cause Leber congenital amaurosis (LCA), a devastating retinal degeneration characterized by the loss or severe impairment of vision within the first few years of life. AIPL1 is highly polymorphic with more than 50 mutations and many more polymorphisms of uncertain pathogenicity identified. As such, it can be difficult to assign disease association of AIPL1 variations. In this study, we investigate suspected disease-associated AIPL1 variations, including nonsynonymous missense and intronic variants to validate their pathogenicity. METHODS: AIPL1 minigenes harboring missense and intronic variations were constructed by amplification of genomic fragments of the human AIPL1 gene. In vitro splice assays were performed to identify the resultant AIPL1 transcripts. RESULTS: We show that all nine of the suspected disease-associated AIPL1 variations investigated induced aberrant pre-mRNA splicing of the AIPL1 gene, and our study is the first to show that AIPL1 missense mutations alter AIPL1 splicing. We reveal that the presumed rare benign variant c.784G>A [p.(G262S)] alters in vitro AIPL1 splicing, thereby validating the disease-association and clarifying the underlying disease mechanism. We also reveal that in-phase exon skipping occurs normally at a low frequency in the retina, but arises abundantly as a consequence of specific AIPL1 variations, suggesting a tolerance threshold for the expression of these alternative transcripts in the retina normally, which is exceeded in LCA. CONCLUSIONS: Our data confirm the disease-association of the AIPL1 variations investigated and reveal for the first time that aberrant splicing of AIPL1 is an underlying mechanism of disease in LCA

    Longitudinal Assessment of Retinal Structure in Achromatopsia Patients With Long-Term Follow-up

    Get PDF
    PURPOSE: To longitudinally characterize structural retinal changes in achromatopsia (ACHM) over extended follow-up. METHODS: Fifty molecularly confirmed ACHM subjects underwent serial spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) imaging. Foveal structure on SD-OCT was graded and compared for evidence of progression, and foveal total retinal thickness (FTRT) and outer nuclear layer (ONL) thickness were serially measured. FAF patterns were characterized and compared over time. RESULTS: Mean SD-OCT follow-up was 61.6 months (age range at baseline, 6–52 years). Forty-five of the subjects had serial FAF (mean follow-up: 48.5 months). Only 6 (12%) of the subjects demonstrated qualitative change on serial foveal SD-OCT scans. Among the entire cohort, there was no statistically significant change over time in FTRT (P = 0.2459) or hyporeflective zone (HRZ) diameter (P = 0.3737). There was a small—but statistically significant—increase in ONL thickness (P = 0.0084). Three different FAF patterns were observed: centrally increased FAF (13/45), normal FAF (14/45), and well-demarcated reduced FAF (18/45), with the latter group displaying a small gradual increase in the area of reduced FAF of 0.055 mm2 over 43.4 months (P = 0.0011). CONCLUSIONS: This longitudinal study of retinal structure in ACHM represents the largest cohort and longest follow-up period to date. Our findings support the presiding notion that ACHM is essentially a stationary condition regarding retinal structure, and any change over time is likely to be small, slow, and variable across patients. This may potentially afford a wider window for therapeutic intervention

    Vision in observers with enhanced S-cone syndrome: an excess of S-cones connected mainly to conventional S-cone pathways but also a faster pathway

    Get PDF
    Purpose: The effect of increased numbers of S-cone photoreceptors in enhanced S-cone syndrome (ESCS) was investigated psychophysically in six ESCS observers to understand more about the relative cone sensitivities and postreceptoral organization. Methods: Measures of temporal sensitivity or delay were made: S- and L-cone temporal acuity (critical flicker fusion or cff), S-cone temporal contrast sensitivity, and S-cone delay. Results: ESCS observers showed uniform enhancements of S-cone cff of between 0.85 and 6.25 Hz, but reductions in L-cone cff. They also showed higher S-cone temporal-contrast-sensitivities at medium and high S-cone adaptation levels with sensitivity functions that peaked near 7.5 Hz but fell off at lower and higher frequencies; in contrast, the mean normal function was flat at low frequencies and fell-off only at high frequencies. The S-cone signal, as in the normal, is subject to large phase delays. Conclusions: We interpret the enhancements in cff as increases in S-cone number in ESCS of between 1.39 and 11.32 times normal density (with a mean of 3.48). The peaked ESCS contrast-sensitivity functions are consistent with S-cone signal interactions that increase sensitivity at intermediate frequencies through constructive interference but decrease it at lower and higher frequencies through destructive interference. Measures of S-cone delays relative to L- and M-cone signals show that the predominant S-cone signals in ESCS are negative and delayed as in normal observers, but reveal another faster, positive S-cone signal. This signal is also likely to be the cause of constructive and destructive interference in the contrast-sensitivity data of ESCS observers

    Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12

    Get PDF
    Purpose: To investigate the natural history of Stargardt disease (STGD1) using fixation location and fixation stability. // Design: Multicenter, international, prospective cohort study. // Methods: Fixation testing was performed using the Nidek MP-1 microperimeter as part of the prospective, multicenter, natural history study on the Progression of Stargardt disease (ProgStar). A total of 238 patients with ABCA4-related STGD1 were enrolled at baseline (bilateral enrollment in 86.6%) and underwent repeat testing at months 6 and 12. // Results: Outcome measures included the distance of the preferred retinal locus from the fovea (PRL) and the bivariate contour ellipse area (BCEA). After 12 months of follow-up, the change in the eccentricity of the PRL from the anatomic fovea was −0.0014 degrees (95% confidence interval [CI], −0.27 degrees, 0.27 degrees; P = .99). The deterioration in the stability of fixation as expressed by a larger BCEA encompassing 1 standard deviation of all fixation points was 1.21 degrees squared (deg2) (95% CI, −1.23 deg2, 3.65 deg2; P = .33). Eyes with increases and decreases in PRL eccentricity and/or BCEA values were observed. // Conclusions: Our observations point to the complexity of fixation parameters. The association of increasingly eccentric and unstable fixation with longer disease duration that is typically found in cross-sectional studies may be countered within individual patients by poorly understood processes like neuronal adaptation. Nevertheless, fixation parameters may serve as useful secondary outcome parameters in selected cases and for counseling patients to explain changes to their visual functionality
    corecore