61 research outputs found

    IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    Get PDF
    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma

    Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls.</p> <p>Methods</p> <p>Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MC<sub>T </sub>and MC<sub>TC </sub>mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β.</p> <p>Results</p> <p>In the alveolar parenchyma in lungs from patients with CF, MC<sub>TC </sub>numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MC<sub>TC </sub>and MC<sub>T </sub>cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MC<sub>TC </sub>density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MC<sub>TC </sub>correlated positively with the degree of fibrosis. The increased density of MC<sub>TC</sub>, as well as MC<sub>TC </sub>expression of TGF-β, correlated negatively with patient lung function.</p> <p>Conclusions</p> <p>The present study reveals that altered mast cell populations, with increased numbers of MC<sub>TC </sub>in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.</p

    Cadherin 26 is an alpha integrin-binding epithelial receptor regulated during allergic inflammation

    No full text
    Cadherins (CDH) mediate diverse processes critical in inflammation, including cell adhesion, migration, and differentiation. Herein, we report that the uncharacterized cadherin 26 (CDH26) is highly expressed by epithelial cells in human allergic gastrointestinal tissue. In vitro, CDH26 promotes calcium-dependent cellular adhesion of cells lacking endogenous CDHs by a mechanism involving homotypic binding and interaction with catenin family members (alpha, beta, and p120), as assessed by biochemical assays. Additionally, CDH26 enhances cellular adhesion to recombinant integrin α4β7 in vitro; conversely, recombinant CDH26 binds αE and α4 integrins in biochemical and cellular functional assays, respectively. Interestingly, CDH26-Fc inhibits activation of human CD4(+) T cells in vitro including secretion of IL-2. Taken together, we have identified a novel functional CDH regulated during allergic responses with unique immunomodulatory properties, as it binds α4 and αE integrins and regulates leukocyte adhesion and activation, and may thus represent a novel checkpoint for immune regulation and therapy via CDH26-Fc

    Cadherin 26 is an alpha integrin-binding epithelial receptor regulated during allergic inflammation

    No full text
    Cadherins (CDH) mediate diverse processes critical in inflammation, including cell adhesion, migration, and differentiation. Herein, we report that the uncharacterized cadherin 26 (CDH26) is highly expressed by epithelial cells in human allergic gastrointestinal tissue. In vitro, CDH26 promotes calcium-dependent cellular adhesion of cells lacking endogenous CDHs by a mechanism involving homotypic binding and interaction with catenin family members (alpha, beta, and p120), as assessed by biochemical assays. Additionally, CDH26 enhances cellular adhesion to recombinant integrin α4β7 in vitro; conversely, recombinant CDH26 binds αE and α4 integrins in biochemical and cellular functional assays, respectively. Interestingly, CDH26-Fc inhibits activation of human CD4(+) T cells in vitro including secretion of IL-2. Taken together, we have identified a novel functional CDH regulated during allergic responses with unique immunomodulatory properties, as it binds α4 and αE integrins and regulates leukocyte adhesion and activation, and may thus represent a novel checkpoint for immune regulation and therapy via CDH26-Fc
    corecore