15 research outputs found

    Malaria infection and the risk of epilepsy: a meta-analysis

    Get PDF
    Epilepsy, a chronic disease of the central nervous system, is highly prevalent in malaria-endemic regions. Therefore, several studies have evaluated the associations between malaria infection and epilepsy development. A meta-analysis of observational studies published from inception to 10 May 2022 has been conducted to synthesize and pool the existing data on this topic. The relevant publications were systematically searched in PubMed/Medline, Scopus, Embase and Web of Science database collections. A random-effects meta-analysis model (REM) was utilized to generate the pooled odds ratio (OR) at 95% confidence intervals (CIs). The between-studies heterogeneity was assessed with I2, as well as several subgroups, meta-regression and sensitivity analysis were performed to identify the source of heterogeneity. Overall, 17 eligible studies containing 6285 cases and 13 909 healthy controls were included. The REM showed a significant positive association between malaria infection and epilepsy development (OR 2.36; 95% CI 1.44–3.88). In subgroup analyses, significant positive associations were observed in studies that: epilepsy was the outcome in the follow-up of patients with cerebral malaria (OR 7.10; 95% CI 3.50–14.38); used blood smear to diagnose malaria (OR 4.80; 95% CI 2.36–9.77); included only children (OR 3.92; 95% CI 1.81–8.50); published before 2010 (OR 6.39; 95% CI 4.25–9.62). Our findings indicated that patients with malaria, especially those with cerebral malaria, are at a high risk of epilepsy development; however, further well-designed and controlled studies are needed to verify the strength of the association

    Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States

    No full text
    Vaccine hesitancy refers to delay in acceptance or refusal of vaccines despite the availability of vaccine services. Despite the efforts of United States healthcare providers to vaccinate the bulk of its population, vaccine hesitancy is still a severe challenge that has led to the resurgence of COVID-19 cases to over 100,000 people during early August 2021. To our knowledge, there are limited nationwide studies that examined the spatial distribution of vaccination rates, mainly based on the social vulnerability index (SVI). In this study, we compiled a database of the percentage of fully vaccinated people at the county scale across the continental United States as of 29 July 2021, along with SVI data as potential significant covariates. We further employed multiscale geographically weighted regression to model spatial nonstationarity of vaccination rates. Our findings indicated that the model could explain over 79% of the variance of vaccination rate based on Per capita income and Minority (%) (with positive impacts), and Age 17 and younger (%), Mobile homes (%), and Uninsured people (%) (with negative effects). However, the impact of each covariate varied for different counties due to using separate optimal bandwidths. This timely study can serve as a geospatial reference to support public health decision-makers in forming region-specific policies in monitoring vaccination programs from a geographic perspective

    Spatial Analysis of COVID-19 Vaccination: A Scoping Review

    No full text
    Spatial analysis of COVID-19 vaccination research is increasing in recent literature due to the availability of COVID-19 vaccination data that usually contain location components. However, to our knowledge, no previous study has provided a comprehensive review of this research area. Therefore, in this scoping review, we examined the breadth of spatial and spatiotemporal vaccination studies to summarize previous findings, highlight research gaps, and provide guidelines for future research. We performed this review according to the five-stage methodological framework developed by Arksey and O’Malley. We screened all articles published in PubMed/MEDLINE, Scopus, and Web of Science databases, as of 21 September 2021, that had employed at least one form of spatial analysis of COVID-19 vaccination. In total, 36 articles met the inclusion criteria and were organized into four main themes: disease surveillance (n = 35); risk analysis (n = 14); health access (n = 16); and community health profiling (n = 2). Our findings suggested that most studies utilized preliminary spatial analysis techniques, such as disease mapping, which might not lead to robust inferences. Moreover, few studies addressed data quality, modifiable areal unit problems, and spatial dependence, highlighting the need for more sophisticated spatial and spatiotemporal analysis techniques

    Dynamic Relations between Incidence of Zoonotic Cutaneous Leishmaniasis and Climatic Factors in Golestan Province, Iran

    No full text
    Background: Zoonotic Cutaneous Leishmaniasis (ZCL), an important public health problem in Iran, is sensitive to climate conditions. This study aimed to examine dynamic relations between the climate factors and incidence of ZCL in Golestan Province, northern Iran during 2010–2012. Methods: Data of monthly climatic factors, including temperature variables, relative humidity variables, evaporation, total rainfall, and number of freezing and rainy days together with monthly ZCL incidence were used. Spearman rank correlation was carried out to explain associations between the monthly ZCL incidence rate and climate factors at 0, 1, 2, 3 and 4 months lagged periods. Pearson’s correlation analysis was conducted to examine the type and strength of relationships between the spatially averaged climate factors and ZCL incidence rate in district level. Stepwise multiple regression was used to find the best combination of independent climatic variables, which predict the ZCL incidence. Results: Spearman correlation analysis indicated that the highest correlations between climate factors and monthly ZCL incidence were established when the climate time-series lagged the ZCL incidence series, especially two month prior to disease incidence. Based on the results of the both Spearman rank correlation and Pearson correlation analyses, ZCL incidences in Golestan Province tend to be more prevalent in areas with higher temperature, lower relative humidity, lower total rainfall, higher evaporation and lower number of rainy days. The results of stepwise regression analysis indicated that minimum temperature, mean humidity, and rainfall had considerable effect on ZCL incidence. Conclusion: Climate factors are major determinants of ZCL incidence rate in Golestan Province and such climate conditions provide favourable conditions for propagation and transmission of ZCL in this endemic area

    A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States

    No full text
    Despite the usefulness of artificial neural networks (ANNs) in the study of various complex problems, ANNs have not been applied for modeling the geographic distribution of tuberculosis (TB) in the US. Likewise, ecological level researches on TB incidence rate at the national level are inadequate for epidemiologic inferences. We collected 278 exploratory variables including environmental and a broad range of socio-economic features for modeling the disease across the continental US. The spatial pattern of the disease distribution was statistically evaluated using the global Moran’s I, Getis–Ord General G, and local Gi* statistics. Next, we investigated the applicability of multilayer perceptron (MLP) ANN for predicting the disease incidence. To avoid overfitting, L1 regularization was used before developing the models. Predictive performance of the MLP was compared with linear regression for test dataset using root mean square error, mean absolute error, and correlations between model output and ground truth. Results of clustering analysis showed that there is a significant spatial clustering of smoothed TB incidence rate (p < 0.05) and the hotspots were mainly located in the southern and southeastern parts of the country. Among the developed models, single hidden layer MLP had the best test accuracy. Sensitivity analysis of the MLP model showed that immigrant population (proportion), underserved segments of the population, and minimum temperature were among the factors with the strongest contributions. The findings of this study can provide useful insight to health authorities on prioritizing resource allocation to risk-prone areas

    Identifying Long COVID Definitions, Predictors, and Risk Factors in the United States: A Scoping Review of Data Sources Utilizing Electronic Health Records

    No full text
    This scoping review explores the potential of electronic health records (EHR)-based studies to characterize long COVID. We screened all peer-reviewed publications in the English language from PubMed/MEDLINE, Scopus, and Web of Science databases until 14 September 2023, to identify the studies that defined or characterized long COVID based on data sources that utilized EHR in the United States, regardless of study design. We identified only 17 articles meeting the inclusion criteria. Respiratory conditions were consistently significant in all studies, followed by poor well-being features (n = 14, 82%) and cardiovascular conditions (n = 12, 71%). Some articles (n = 7, 41%) used a long COVID-specific marker to define the study population, relying mainly on ICD-10 codes and clinical visits for post-COVID-19 conditions. Among studies exploring plausible long COVID (n = 10, 59%), the most common methods were RT-PCR and antigen tests. The time delay for EHR data extraction post-test varied, ranging from four weeks to more than three months; however, most studies considering plausible long COVID used a waiting period of 28 to 31 days. Our findings suggest a limited utilization of EHR-derived data sources in defining long COVID, with only 59% of these studies incorporating a validation step

    Spatio-Temporal Modeling of COVID-19 Spread in Relation to Urban Land Uses: An Agent-Based Approach

    No full text
    This study aims to address the existing gaps in evidence regarding spatio-temporal modeling of COVID-19 spread, specifically focusing on the impact of different urban land uses in a geospatial information system framework. It employs an agent-based model at the individual level in Gorgan, northeast Iran, characterized by diverse spatial and demographic features. The interactions between human agents and their environment were considered by incorporating social activities based on different urban land uses. The proposed model was integrated with the susceptible–asymptomatic–symptomatic–on treatment–aggravated infection–recovered–dead epidemic model to better understand the disease transmission at the micro-level. The effect of various intervention scenarios, such as social distancing, complete and partial lockdowns, restriction of social gatherings, and vaccination was investigated. The model was evaluated in three modes of cases, deaths, and the spatial distribution of COVID-19. The results show that the disease was more concentrated in central areas with a high population density and dense urban land use. The proposed model predicted the distribution of disease cases and mortality for different age groups, achieving 72% and 71% accuracy, respectively. Additionally, the model was able to predict the spatial distribution of disease cases at the neighborhood level with 86% accuracy. Moreover, findings demonstrated that early implementation of control scenarios, such as social distancing and vaccination, can effectively reduce the transmission of COVID-19 spread and control the epidemic. In conclusion, the proposed model can serve as a valuable tool for health policymakers and urban planners. This spatio-temporal model not only advances our understanding of COVID-19 dynamics but also provides practical tools for addressing future pandemics and urban health challenges

    A 24-year exploratory spatial data analysis of Lyme disease incidence rate in Connecticut, USA

    No full text
    Despite efforts to control Lyme disease in Connecticut, USA, it remains endemic in many towns, posing a heavy burden. We examined changes in the spatial distribution of significant spatial clusters of Lyme disease incidence rates at the town level from 1991 to 2014 as an approach for targeted interventions. Lyme disease data were grouped into four discrete time periods and incidence rates were smoothed with Empirical Bayes estimation in GeoDa. Local clustering was measured using a local indicator of spatial autocorrelation (LISA). Elliptic spatial scan statistics (SSS) in different shapes and directions were also performed in SaTScan. The accuracy of these two cluster detection methods was assessed and compared for sensitivity, specificity, and overall accuracy. There was significant clustering during each period and significant clusters persisted predominantly in western and eastern parts of the state. Generally, the SSS method was more sensitive, while LISA was more specific with higher overall accuracy in identifying clusters. Even though the location of clusters changed over time, some towns were persistently (across all four periods) identified as clusters in LISA and their neighbouring towns (three of four periods) in SSS suggesting these regions should be prioritized for targeted interventions

    Spatial Modeling of COVID-19 Prevalence Using Adaptive Neuro-Fuzzy Inference System

    No full text
    This study is dedicated to modeling the spatial variation in COVID-19 prevalence using the adaptive neuro-fuzzy inference system (ANFIS) when dealing with nonlinear relationships, especially useful for small areas or small sample size problems. We compiled a broad range of socio-demographic, environmental, and climatic factors along with potentially related urban land uses to predict COVID-19 prevalence in rural districts of the Golestan province northeast of Iran with a very high-case fatality ratio (9.06%) during the first year of the pandemic (2020–2021). We also compared the ANFIS and principal component analysis (PCA)-ANFIS methods for modeling COVID-19 prevalence in a geographical information system framework. Our results showed that combined with the PCA, the ANFIS accuracy significantly increased. The PCA-ANFIS model showed a superior performance (R2 (determination coefficient) = 0.615, MAE (mean absolute error) = 0.104, MSE (mean square error) = 0.020, and RMSE (root mean square error) = 0.139) than the ANFIS model (R2 = 0.543, MAE = 0.137, MSE = 0.034, and RMSE = 0.185). The sensitivity analysis of the ANFIS model indicated that migration rate, employment rate, the number of days with rainfall, and residential apartment units were the most contributing factors in predicting COVID-19 prevalence in the Golestan province. Our findings indicated the ability of the ANFIS model in dealing with nonlinear parameters, particularly for small sample sizes. Identifying the main factors in the spread of COVID-19 may provide useful insights for health policymakers to effectively mitigate the high prevalence of the disease

    Modeling COVID-19 Transmission in Closed Indoor Settings: An Agent-Based Approach with Comprehensive Sensitivity Analysis

    No full text
    Computational simulation models have been widely used to study the dynamics of COVID-19. Among those, bottom-up approaches such as agent-based models (ABMs) can account for population heterogeneity. While many studies have addressed COVID-19 spread at various scales, insufficient studies have investigated the spread of COVID-19 within closed indoor settings. This study aims to develop an ABM to simulate the spread of COVID-19 in a closed indoor setting using three transmission sub-models. Moreover, a comprehensive sensitivity analysis encompassing 4374 scenarios is performed. The model is calibrated using data from Calabria, Italy. The results indicated a decent consistency between the observed and predicted number of infected people (MAPE = 27.94%, RMSE = 0.87 and χ2(1,N=34)=(44.11,p=0.11)). Notably, the transmission distance was identified as the most influential parameter in this model. In nearly all scenarios, this parameter had a significant impact on the outbreak dynamics (total cases and epidemic peak). Also, the calibration process showed that the movement of agents and the number of initial asymptomatic agents are vital model parameters to simulate COVID-19 spread accurately. The developed model may provide useful insights to investigate different scenarios and dynamics of other similar infectious diseases in closed indoor settings
    corecore