22 research outputs found

    Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone

    Get PDF
    Globally, the economic losses due to hard ticks infestation and the control of the associated diseases have been calculated at USD $13.9-18.7 billion per year. The economic impact is related to its direct damage to the skins, blood loss, anemia, severe immunological reactions and indirect losses that related to the effects of hemoparasites, cost of treatment for clinical cases and expenses incurred in the control of ticks. The current study evaluated the acaricidal activities of fennel Foeniculum vulgare essential oil and its main components; trans-anethole and fenchone; against R. annulatus. GC-MS analysis revealed that this oil contained 16 components representing 99.9% of the total identified compounds with E-anethole being the predominant component(64.29%), followed by fenchone (9.94%). The fennel oil and trans-anethole showed significant acaricidal activities. The LC50 of the fennel oil was attained at concentrations of 12.96% for adult ticks and 1.75% for tick larvae meanwhile the LC50 of trans-anethole was reached at concentrations of 2.36% for adult tick and 0.56% for tick larvae. On the contrary, fenchone showed no any significant adulticidal activities and its LC50 attained at a concentration of 9.11% for tick larvae. Regarding repellence activities, trans-anethole achieved 100% repellency at the concentration of 10% while fennel showed 86% repellency at the same concentration. Fenchone showed no repellency effect. Treatment of larvae with fennel, trans-anethole, and fenchone LC50 concentrations significantly inhibited the acetylcholinesterase activity. Meanwhile, glutathione s-transferase activity was significantly decreased in fennel treated larvae but no significant effect was found in the larvae of trans-anethole and fenchone groups. These results indicate that the acaricide effect of fennel oil may attributed to its high content of trans-anethole. This was supported by potent adulticidal, larvicidal, and repellency effects of trans-anethole against Rhipeciphalus annulatus tick and therefore it could be included in the list of acaricide of plant origin

    Prevalence and antimicrobial sensitivity of Escherichia coli and Salmonella species in field cases of rabbit intestinal coccidiosis treated with prebiotic

    Get PDF
    This study aimed to investigate the effect of prebiotic treatment on E. coli and Salmonella species during natural intestinal coccidiosis in rabbits. The experiment was conducted on 45 selected farm rabbits of which 15 were coccidian free (Negative control; NC, group) and 30 were naturally coccidian infected. The infected animals were allocated into two equal groups including positive control (PC) and prebiotic treated (PT) that were orally treated with prebiotic for 8 successive days. Fecal oocyst count was assessed daily during the course of treatment. Meanwhile, the PC group had a significantly high oocyst count (21.67×103 ± 0.82 OPG), with a significant increase in the prevalence of E. coli and Salmonella (86.7 % and 46.7 %, respectively). Moreover, the NC group remained coccidian free and exhibited E. coli infection only with no detection of salmonella isolates. Findings of in-vitro susceptibility testing showed that E. coli isolates were highly resistant to most of the tested antimicrobials while Salmonella isolates showed variable degrees of resistance. In conclusion, the prebiotic treatment significantly reduced the prevalence of E. coli and Salmonella infections coexisted with intestinal coccidiosis in naturally infected rabbits

    Acaricidal activity of tea tree and lemon oil nanoemulsions against Rhipicephalus annulatus

    Get PDF
    Tick infestation is a serious problem in many countries since it has an impact on the health of animals used for food production and pets, and frequently affects humans. Therefore, the present study aimed to investigate the acaricidal effects of nanoemulsions of essential oils o

    Toxoplasma gondii and Neospora caninum Antibodies in Dogs and Cats from Egypt and Risk Factor Analysis.

    Get PDF
    BACKGROUND Toxoplasma gondii and Neospora caninum are major protozoan parasites of worldwide distribution and significance in veterinary medicine and, for T. gondii, in public health. Cats and dogs, as final hosts for T. gondii and N. caninum, respectively, have a key function in environmental contamination with oocysts and, thus, in parasite transmission. Very little is known about the prevalence of T. gondii infections in dogs and cats in Egypt, and even less about the prevalence of N. caninum in the same hosts. METHODS In the current study, 223 serum samples of both dogs (n = 172) and cats (n = 51) were investigated for specific antibodies to T. gondii and N. caninum using commercially available ELISAs. A risk factor analysis was conducted to identify factors associated with seropositivity. RESULTS & DISCUSSION Exposure to T. gondii was reported in 23.3% of the dogs and in 9.8% of the cats, respectively. In addition, N. caninum-specific antibodies were recorded in 5.8% of dogs and in 3.4% of cats. A mixed infection was found in two dogs (1.2%) and in one cat (2%). Antibodies to T. gondii in dogs were significantly more frequent in dogs aged 3 years or more and in male German Shepherds. As this breed is often used as watchdogs and was the most sampled breed in Alexandria governorate, the purpose "watchdog" (compared to "stray" or "companion"), the male sex, and the governorate "Alexandria" also had a significantly higher seroprevalence for T. gondii. No factors associated with antibodies to N. caninum could be identified in dogs, and no significant factors were determined in cats for either T. gondii or N. caninum infection. Our study substantially adds to the knowledge of T. gondii infection in dogs and cats and presents data on N. caninum infection in cats for the first and in dogs in Egypt for the second time

    Tunable polymeric mixed micellar nanoassemblies of Lutrol F127/Gelucire 44/14 for oral delivery of praziquantel: a promising nanovector against hymenolepis nana in experimentally-infected rats

    Get PDF
    Hymenolepiasis represents a parasitic infection of common prevalence in pediatrics with intimidating impacts, particularly amongst immunocompromised patients. The present work aimed to snowball the curative outcomes of the current mainstay of hymenolepiasis chemotherapy, praziquantel (PRZ), through assembly of polymeric mixed micelles (PMMs). Such innovative nano-cargo could consolidate PRZ hydrosolubility, extend its circulation time and eventually upraise its bioavailability, thus accomplishing a nanoparadigm for hymenolepiasis tackling at lower dose levels. For consummating this goal, PRZ-PMMs were tailored via thin-film hydration technique integrating a binary system of Lutrol F127 and Gelucire 44/14. Box-Behnken design was planned for optimizing the nanoformulation variables employing Design-Expert® software. Also, in Hymenolepis nana-infected rats, the pharmacodynamics of the optimal micellar formulation versus the analogous crude PRZ suspension were scrutinized on the 1st and 3rd days after administration of a single oral dose (12.5 or 25 mg/kg). Moreover, in vitro ovicidal activity of the monitored formulations was estimated utilizing Fuchsin vital stain. Furthermore, the in vivo pharmacokinetics were assessed in rats. The optimum PRZ-PMMs disclosed conciliation between thermodynamic and kinetic stability, high entrapment efficiency (86.29%), spherical nanosized morphology (15.18 nm), and controlled-release characteristics over 24 h (78.22%). 1H NMR studies verified PRZ assimilation within the micellar core. Additionally, the in vivo results highlighted a significant boosted efficacy of PRZ-PMMs manifested by fecal eggs output and worm burden reduction, which was clearly evident at the lesser PRZ dose, besides a reversed effect for the intestinal histological disruptions. At 50 µg/mL, PRZ-PMMs increased the percent of non-viable eggs to 100% versus 47% for crude PRZ, whilst shell destruction and loss of embryo were only clear with the applied nano-cargo. Moreover, superior bioavailability by 3.43-fold with elongated residence time was measured for PRZ-PMMs compared to PRZ suspension. Practically, our results unravel the potential of PRZ-PMMs as an oral promising tolerable lower dose nanoplatform for more competent PRZ mass chemotherapy

    A rapid and simple single-step method for the purification of Toxoplasma gondii tachyzoites and bradyzoites

    Get PDF
    This study describes a simple method for the large-scale isolation of pure Toxoplasma gondii tachyzoites and bradyzoites. T. gondii tachyzoites were obtained from infected human foreskin fibroblasts (HFFs) and peritoneal exudates of mice, while tissue cysts containing bradyzoites were collected from chronically infected mice. Harvested cells and brain tissues were incubated in Hanks balanced salt solution (HBSS), containing 0.25% trypsin and 0.5% taurodeoxycholic acid (TDC) for 5 min. Subsequent washes in phosphate buffered saline (PBS) were conducted, and the cell viability of the preparations was good, as determined by flow cytometry and ability to reinfect HFF cells and propagate in mice. The purification procedure allowed for a rapid preparation of pure T. gondii tachyzoites and bradyzoites in sufficient quantity that can be used for downstream procedures. The advantage of the new method is that it is convenient and inexpensive.The National Natural Science Foundation of China (No. 31502071), Youth Innovative Talents Project of Guangdong province Education Department (No. 2017KQNCX212), Guangdong province (2017GDK07), Start-up Research Grant Program provided by Foshan University, Foshan city, Guangdong province for distinguished researchers, Guangdong Science and Technology Plan Project (Grant No: 1244060045607389XC), and School of Life Science and Engineering fund (Grant No: KLPREAD201801-02).http://www.wileyonlinelibrary.com/journal/vms3am2021Paraclinical Science

    Synthesis and efficacy of cinnamon oil formulations and their sustainable release against common house mosquito larvae

    No full text
    Abstract Background Control of mosquitoes is considered an essential public health priority. This study was designed to estimate the larvicidal activity of two formulations of Cinnamomum zeylanicum EO for controlling Culex pipiens larvae. Results The prepared formulations were a nanoemulsion of cinnamon (CNE), cinnamon (CN) alone and ordinary cinnamon essential oil mixed with sesame oil (CSO). The cinnamon + sesame oil (CSO) was added as one part cinnamon to 3 parts SO. Different concentrations were prepared and applied following the WHO larvicidal bioassay protocol. Our findings revealed that the LC50 of the CNE form ranged from 85.3 µg/mL to 28.30 µg/mL. The LC50 of SO alone was 1265 µg/mL but when mixed with CNE to form the CSO mixture, this decreased to 159.00 µg/mL. In terms of residual effect, the ordinary form of cinnamon had a residual effect in water for 72 h at a dose of 1000 µg/ml, but this extended to 120 h at the same dose when the CNE form was used. However CSO did not have a residual effect, however. Conclusion The nanoemulsion form significantly improved the efficacy and residual effect of cinnamon against Culex pipiens larvae. Additionally, mixing cinnamon with sesame oil had a synergistic effect. This may assist control strategies against the house mosquito, Culex pipiens

    Molecular Characterization of Eimeria Species Naturally Infecting Egyptian Baldi Chickens

    No full text
      Background: Coccidiosis is a serious protozoal disease of poultry. The iden-tification of Eimeria species has important implications for diagnosis and con-trol as well as for epidemiology. The molecular characterization of Eimeria spe-cies infecting Egyptian baladi chickens was investigated. Methods:Eimeria species oocysts were harvested from intestines of naturally infected Egyptian baldi chickens. The morphometry characterization of oocysts along with COCCIMORPH software was done. The DNA was extracted ini-tially by freezing and thawing then the prepared samples was subjected to commercial DNA kits. The DNA products were analyzed through conven-tional polymerase chain reaction by using amplified region (SCAR) marker. Results:The PCR results confirmed the presence of 7 Eimeria species in the examined fecal samples of Egyptian baldi breed with their specific ampilicon sizes being E. acervulina (811bp), E. brunette (626bp), E. tenella (539bp), E. max-ima (272bp), E. necatrix (200bp), E. mitis (327bp) and E. praecopx (354bp). A sequencing of the two most predominant species of Eimeria was done, on E. tenella and E. máxima. Analysis of the obtained sequences revealed high identi-ties 99% between Egyptian isolates and the reference one. Similarly, E. maxima isolated from Egyptian baldi chickens showed 98% nucleotide identities with the reference strain. Only single nucleotide substitution was observed among the Egyptian E. tenella isolates (A181G) when compared to the reference one. The Egyptian isolates acquired 4 unique mutations (A68T, C164T, G190A and C227G) in compared with the reference sequence. Conclusion:This is the first time to identify the 7 species of Eimeria from Egyptian baladi chickens

    Rhipicephalus annulatus (Acari: Ixodidae) Control by Nigella sativa, Thyme and Spinosad Preparations

    No full text
    Background: Several compounds obtained from plants have potential insecticidal, growth deterrent or repellent characteristics. The control of hard ticks by non-chemical substances was targeted in this study. Methods: The effect of 36 materials on in-vitro ticks was studied, including 2 absolute controls (water only or ab­solute ethyl alcohol only), 6 conventionally used spinosad preparations (aqueous solutions), 12 Nigella sativa (N. sativa) preparations (aqueous and alcoholic solutions), and 12 Thyme preparations (aqueous and alcoholic solutions). The engorged ticks were tested in-vitro for mortality and oviposition ability using the studied materials. Results: The final mortality after 48 hours of application in N. sativa aqueous preparations began from 10.0% con­centration, 1.0% to 100% by concentration preparations ≥10%. In addition, N. sativa alcoholic preparations began from 50.0% concentration, 2 % to 100% by concentration ≥5%. Meanwhile, Thyme aqueous and alcoholic prepa­rations began from 70.0% concentration, 5% to 90% by concentration 10–20%. Additionally, spinosad aqueous preparations and both of control preparations (Water and Alcohol) resulted in no mortality. All differences were sta­tistically significant. The oviposition was stopped in N. sativa (aqueous ≥10% and alcoholic ≥5%) and in spinosad (aqueous≥25%). The aqoues dilution of the used matters killed B. annulatus larvae beginning from the concentration 5%. Conclusion: Nigella sativa alcohol 20% was the best of studied preparations being the lowest concentration (20%) that could achieve the highest lethal (100%) effect in shortest time (12 hours). Moreover, Thyme oil and spinosad could not kill 100% of adult but did on larvae
    corecore