4 research outputs found

    Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    Get PDF
    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues from the land can have negative impacts on soil health. Because of this computational tools are needed that can help guide decisions on the amount of agricultural residue that can be sustainably removed. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist that are capable of simultaneously addressing all of the environmental factors that can limit the availability of residue for bioenergy production. This paper presents an integrated framework of models and data that provide a coupled a set of environmental process models and databases that can support agricultural residue removal decisions. Specifically the RUSLE2, WEPS, and Soil Conditioning Index models have been integrated together with the disparate set of databases providing the soils, climate, and management practice data required. The integrated system has been demonstrated for two example cases. In the first case the potential impact of agricultural residue removal is explored. In the second case an aggregate assessment of the agricultural residues available bioenergy production in the state of Iowa is performed

    U.S. Billion-ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Get PDF
    The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available. In addition to updating the 2005 study, this report attempts to address a number of its shortcoming

    Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    Get PDF
    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product
    corecore