3 research outputs found

    Design of an In-Situ Sensor Package to Track CubeSat Deployments

    Get PDF
    Currently, radar measurements of low-earth-orbit CubeSats are only possible during a small portion of a CubeSat’s orbit – typically long after the CubeSat’s deployment – making near real-time space situational awareness (SSA) difficult. The CU Boulder Smead Aerospace Engineering Department has developed a concept to monitor CubeSat deployments from the deployer itself and provide relative position and velocity measurements of deployed payloads to provide faster orbital parameter estimation. Teaming with NanoRacks LLC, the VANTAGE team (Visual Approximation of Nanosat Trajectories to Augment Ground-based Estimation) has developed an innovative sensor package prototype consisting of an Infra-red (IR) Time of Flight (ToF) camera for close-range CubeSat position measurements and a monochrome optical camera for continued detection and in-plane position refinement, as well as a set of algorithms to process and fuse these CubeSat position measurements. These sensors and their avionics are incorporated into a prototype integrated system designed to fit within a single 6U CubeSat Deployment silo on the NanoRacks ISS deployer, enabling the detection, identification, and tracking of up to 6 CubeSats out to 100m with a maximum positional error of 10m within 15 minutes of deployment

    CSAC Flight Experiment to Characterize On-Orbit Performance

    Get PDF
    Precise positioning, navigation, and timing requirements are driving a need for increasingly accurate spacecraft timing systems. This paper describes an experiment being developed at the University of Colorado Boulder to quantify the stability and behavior of a chip-scale atomic clock (CSAC) onboard an Air Force Research Laboratory (AFRL) University Nanosatellite Program (UNP-9) MAXWELL CubeSat mission. The CSAC experiment will run onboard MAXWELL, enabling the GPS receiver measurements to occur using the unsteered CSAC as an external clock. The experiment will record and downlink the position, clock bias, pseudorange, phase, and temperature. These data will allow us to characterize the on-orbit performance of the CSAC

    A Methodology for Successful University Graduate CubeSat Programs

    Get PDF
    The University of Colorado Smead Department of Aerospace Engineering has over a decade of success in designing, building, and operating student led CubeSat missions. The experience and lessons learned from building and operating the CSSWE, MinXSS-1, MinXSS-2, and QB50-Challenger missions have helped grow a knowledge base on the most effective and efficient ways to manage some of the “tall poles” when it comes to student run CubeSat missions. Among these “tall poles” we have seen student turnover, software, and documentation become some of the hardest to knock-down and we present our strategies for doing so. We use the MAXWELL mission (expected to launch in 2021) as a road-map to detail the methodology we have built over the last decade to ensure the greatest chance of mission success
    corecore