31 research outputs found

    Isopropyl 2-[2-(2,6-dichloro­anilino)phen­yl]acetate

    Get PDF
    In the title compound, C17H17Cl2NO2, the NH group exhibits an intra­molecular hydrogen bond to the carbonyl O atom and no inter­molecular hydrogen bonding, in contrast with previous studies. The dihedral angle between the two benzene rings is 58.57 (5)°. The ester group is planar, the greatest deviation from planarity being 0.0135 (11) Å for the ether O atom

    Systemic Resistance in Chickpea (Cicer arietinum L.) Elicited by Some Biotic Inducers Against Root Diseases

    Get PDF
    The effect of seed treatment of chickpea (Cicer arietinum L.) with biotic inducers such as Trichoderma viride, Trichoderma harzianum, Pseudomonas fluorescens and Bacillus subtilis in contrast to the fungicide Rizolex-T, were evaluated in the greenhouse and under field conditions during the 2017/2018 season to control the plant disease caused by Fusarium oxysporum, Rhizoctonia solani, or Sclerotinia sclerotiorum, at Giza Agriculture Research Station, Agricultural Research Center, Giza Governorate, Egypt. The tested strains significantly inhibit the mycelial growth of the three tested fungi for pathogenic growth. Compared to the untreated control under greenhouse and field conditions, all the biotic inducer treatments tested significantly decreased the percentages of damping-off, root rot, stem rot and/or wilt diseases. It was noticed that Rizolex-T and (Trichoderma viride + Trichoderma harzianum) have reached the highest percentage of surviving plants followed by (Pseudomonas fluorescens + Bacillus subtilis), Trichoderma viride, Trichoderma harzianum, Bacillus subtilis, Pseudomonas fluorescens and Serratia marcescens, respectively. As well as all the treatments of the checked biocontrol agents increased the growth and yield parameters of chickpea significantly, i.e., plant hight, branches number per plant, pods number per plant, seeds number per plant, seeds weight per plant, 100 seeds weight, and chickpea yield ton/fed. In the presence of the three studied pathogens, defense-related enzyme activities (β-1,3 glucanase, peroxidase, and polyphenoloxidase) have also been determined in all chickpea plants treated with tested biotic inducers compared to untreated infested and non-infested control. The treatment of (Trichoderma harzianum + Trichoderma viride) showed the highest increase in phenol content and the activities of defense-related enzymes

    Evaluation of Antimicrobial bioactive compounds from Endophytic Fungi Isolated from Moringa oleifera

    Get PDF
    Endophytic fungi are microorganisms that inhabit the living tissues of their host plants without causing any host loss. They are considered as a continuous natural source of novel bioactive secondary metabolites with potential application in medicine, which are almost same to their host plant. In this study a total of nine endophytic fungal isolates were collected from leaves and stems of Moringa oleifera. Based on the colonization frequency (CF) results, the highest number of isolates was obtained from plant stem, while the least was from leaves. The nine isolates were identified by keeping track of morphological and microscopic observations. Identification of the two antimicrobial potent strains was confirmed by 18S rDNA-based molecular analysis. The nine isolates were found belonging to Chaetomium, Alternaria, Fusarium, Aspergillus, Mycelia, Penicillium and Nigrospora taxa. Among them, Chaetomium taxon was included the highest CF) 40% (. Evaluation of antimicrobial activity documented ethyl acetate fungal extract as the highest effective inhibitor against Gram-negative and Gram-positive bacteria, and Aspergillus fumigatus. Minimum inhibitory concentration (MIC) was examined for the two most potent antimicrobial effective extracts, from Chaetomium laterale and Chaetomium interruptum; it was ranged from 12.5 to 0.39 mg/ml

    Evaluation of the Native Killer Yeasts against the Postharvest Phytopathogenic mould of Balady Orange Fruits

    Get PDF
    Yeasts are some of the most important postharvest biocontrol agents (BCAs). Postharvest oranges frequently deteriorate due to green and blue moulds, leading to significant economic losses. The purposes of the present study were to isolate blue and green moulds from infected orange fruits, to assess the ability of killer yeasts isolated from healthy orange fruits and leaves from orange orchards to control blue and green moulds and to evaluate the additive effect of BCAs in combination with 2% sodium bicarbonate (SBC), 2%, sodium benzoate (SB), 2% calcium chloride, 0.2% salicylic acid (SA) or 0.5% chitosan. Among eight fungi isolated from orange fruits showing symptoms of green and blue mulds infection, two were identified as P. digitatum and P. italicum and selected for in vitro assays. Twenty eight yeast isolates were obtained from orange leaves and from the surface of fruits. All yeasts exhibited high killer activity. Twelve yeasts reduced 22.5 –70% of P. digitatum growth while seven isolates reduced 21.1- 68.5% of P. italicum growth. The most potent yeast isolates were identified as Candida pseudotropicalis, Candida salmanticensis, Candida membranifaciens and Pichia guilliermondii. Combination of the BCAs, C. pseudotropicalis, C. salmanticensis and P. guilliermondii with SBC, CaCl2 or chitosan increased their effectiveness against P. digitatum. While combination of C. pseudotropicalis, C. membranifaciens and P. guilliermondii with these natural compounds decreased their effectiveness against P. italicum. Combination of C. membranifaciens with SA increased its effectiveness against P. digitatum. Sodium benzoate has additive effect on C. pseudotropicalis against P. digitatum and C. pseudotropicalis and P. guilliermondii against P. italicum

    Novel highly emissive non proteinogenic amino acids : synthesis of 1,3,4-thiadiazolyl asparagines and evaluation as fluorimetric chemosensors for biologically relevant transition metal cations

    Get PDF
    Highly emissive heterocyclic asparagine derivatives bearing a 1,3,4-thiadiazolyl unit at the side chain, functionalised with electron donor or acceptor groups, were synthesised and evaluated as amino acid based fluorimetric chemosensors for metal cations such as Cu2+, Zn2+, Co2+ and Ni2+. The results suggest that there is a strong interaction through the donor heteroatoms at the side chain of the various asparagine derivatives, with high sensitivity towards Cu2+ in a ligand-metal complex with 1:2 stoichiometry. Association constants and detection limits for Cu2+ were calculated. The photophysical and metal ion sensing properties of these asparagine derivatives confirm their potential as fluorimetric chemosensors and suggest that they can be suitable for incorporation into chemosensory peptidic frameworks.Fundação para a Ciência e a Tecnologia (FCT) - PTDC/QUI/66250/2006 (FCOMP-01-0124-FEDER-007428

    Genome Sequence of Kitasatospora setae NBRC 14216T: An Evolutionary Snapshot of the Family Streptomycetaceae

    Get PDF
    Kitasatospora setae NBRC 14216T (=KM-6054T) is known to produce setamycin (bafilomycin B1) possessing antitrichomonal activity. The genus Kitasatospora is morphologically similar to the genus Streptomyces, although they are distinguishable from each other on the basis of cell wall composition and the 16S rDNA sequence. We have determined the complete genome sequence of K. setae NBRC 14216T as the first Streptomycetaceae genome other than Streptomyces. The genome is a single linear chromosome of 8 783 278 bp with terminal inverted repeats of 127 148 bp, predicted to encode 7569 protein-coding genes, 9 rRNA operons, 1 tmRNA and 74 tRNA genes. Although these features resemble those of Streptomyces, genome-wide comparison of orthologous genes between K. setae and Streptomyces revealed smaller extent of synteny. Multilocus phylogenetic analysis based on amino acid sequences unequivocally placed K. setae outside the Streptomyces genus. Although many of the genes related to morphological differentiation identified in Streptomyces were highly conserved in K. setae, there were some differences such as the apparent absence of the AmfS (SapB) class of surfactant protein and differences in the copy number and variation of paralogous components involved in cell wall synthesis

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Anticancer Activities of Newly Synthesized Chiral Macrocyclic Heptapeptide Candidates

    No full text
    As important cancer therapeutic agents, macrocyclic peptides have recently drawn great attention, mainly because they are synthetically accessible and have lower toxicity towards normal cells. In the present work, we synthesized newly macrocyclic pyridoheptapeptide derivatives. The synthesized derivatives were characterized using standard chemical and spectroscopic analytical techniques, and their anticancer activities against human breast and hepatocellular cancer cells were investigated. Results showed that compounds 1a and 1b were the most effective against hepatocellular (HepG2) and breast (MCF-7) cancer cell lines, respectively
    corecore