9 research outputs found
SHORT TECHNICAL REPORTS Housekeeping genes in cancer: normalization of array data
Biological maintenance of cells under variable conditions should affect gene expression of only certain genes while leaving the rest unchanged. The latter, termed “housekeeping genes, ” by definition must reflect no change in their expression levels during cell development, treatment, or disease state anomalies. However, deviations from this rule have been observed. Using DNA microarray technology, we report here variations in expression levels of certain housekeeping genes in prostate cancer and a colorectal cancer gene therapy model system. To highlight, differential expression was observed for ribosomal protein genes in the prostate cancer cells and β-actin in treated colorectal cells. High-throughput differential gene expression analysis via microarray technology and quantitative PCR has become a common platform for classifying variations in similar types of cancers, response to chemotherapy, identifying disease markers, etc. Therefore, normalization of the system based on housekeeping genes, such as those reported here in cancer, must be approached with caution
Recommended from our members
Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR)
Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor.
The melanoma differentiation-associated gene 7 (mda-7), also called interleukin (IL)-24, suppresses the growth of some cancers in vitro and in vivo as a result of the ectopic expression of its protein. However, the function of the secreted form of the protein in cancer has not been previously studied. The purpose of this study was to determine the antiangiogenic function of a secreted form of the MDA-7/IL-24 protein (sMDA-7/IL-24). In vitro, sMDA-7/IL-24 inhibited both endothelial cell differentiation and migration of endothelial cells induced by vascular endothelial growth factor and basic fibroblast growth factor. The sMDA-7/IL-24-mediated inhibitory effect was 10-50 times more potent than endostatin, IFN-gamma, and IFN-inducible protein 10 in vitro. Furthermore, the inhibitory effect was not mediated by IFN or IFN-inducible protein 10. IL-22 receptor mediated the antiangiogenic activity of sMDA-7/IL-24. Administration of a blocking antibody to IL-22 receptor in conjunction with sMDA-7/IL-24 led to abrogation of inhibition of endothelial differentiation. sMDA-7/IL-24 inhibited vascular endothelial growth factor-induced angiogenesis as evidenced by reduced vascularization and hemoglobin content in in vivo Matrigel plug assays. In vivo, the growth of human lung tumor cells was significantly inhibited, and vascularization was reduced when the cells were mixed with 293 cells stably expressing sMDA-7/IL-24. Systemic administration of sMDA-7/IL-24 inhibited lung tumor growth in a mouse xenograft model. Associated with tumor growth inhibition was decreased tumor microvessel density and hemoglobin content, indicating the presence of antiangiogenic activity. These data demonstrate that sMDA-7/IL-24 is a novel and potent antiangiogenic effector and support the development of MDA-7/IL-24-based therapeutics