461 research outputs found

    Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat

    Get PDF
    Chromosome pairing, synapsis, and DNA recombination are three key processes that occur during early meiosis. A previous study of Poor Homologous Synapsis 1 (PHS1) in maize suggested that PHS1 has a role in coordinating these three processes. Here we report the isolation of wheat (Triticum aestivum) PHS1 (TaPHS1), and its expression profile during and after meiosis. While the TaPHS1 protein has sequence similarity to other plant PHS1/PHS1-like proteins, it also possesses a unique region of oligopeptide repeat units. We show that TaPHS1 interacts with both single- and double-stranded DNA in vitro and provide evidence of the protein region that imparts the DNA-binding ability. Immunolocalisation data from assays conducted using antisera raised against TaPHS1 show that TaPHS1 associates with chromatin during early meiosis, with the signal persisting beyond chromosome synapsis. Furthermore, TaPHS1 does not appear to colocalise with the asynapsis protein (TaASY1) suggesting that these proteins are probably independently coordinated. Significantly, the data from the DNA-binding assays and 3-dimensional immunolocalisation of TaPHS1 during early meiosis indicates that TaPHS1 interacts with DNA, a function not previously observed in either the Arabidopsis or maize PHS1 homologues. As such, these results provide new insight into the function of PHS1 during early meiosis in bread wheat

    Design Arts: National Academy of Design (1994): Correspondence 17

    Get PDF

    Obscenity: Andres Serrano Controversy (1989): Correspondence 47

    Get PDF

    Community Arts Partnership Act (1994): Correspondence 01

    Get PDF

    Priming crops for the future: rewiring stress memory

    Get PDF
    First published 2021The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. ‘Rewired plants’ with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.Haipei Liu, Amanda J. Able and Jason A. Abl

    Small RNA, transcriptome and degradome analysis of the transgenerational heat stress response network in durum wheat

    Get PDF
    Published: 24 May 2021Heat stress is a major limiting factor of grain yield and quality in crops. Abiotic stresses have a transgenerational impact and the mechanistic basis is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Leaf physiological traits, harvest components and grain quality traits were characterized under the impact of parental and progeny heat stress. The parental heat stress treatment had a positive influence on the offspring for traits including chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome and degradome provided the first description of the molecular networks mediating heat stress adaptation under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes characterized subject to the progeny treatment, parental treatment and tissue-type factors. Gene Ontology and KEGG pathway analysis of stress responsive microRNAsmRNA modules provided further information on their functional roles in biological processes such as hormone homeostasis, signal transduction and protein stabilization. Our results provide new insights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermo-tolerance in breeding.Haipei Liu, Amanda J. Able and Jason A. Abl

    Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction

    Get PDF
    In Mediterranean environments, water deficiency and heat during reproduction severely limit cereal crop production. Our research investigated the effects of single and combined pre-anthesis water-deficit stress and post-anthesis heat stress in ten Australian durum genotypes, providing a systematic evaluation of stress response at the molecular, physiological, grain quality and yield level. We studied leaf physiological traits at different reproductive stages, evaluated the grain yield and quality, and the associations among them. We profiled the expression dynamics of two durum microRNAs and their protein-coding targets (auxin response factors and heat shock proteins) involved in stress adaptation. Chlorophyll content, stomatal conductance and leaf relative water content were mostly reduced under stress, however, subject to the time-point and genotype. The influence of stress on grain traits (e.g., protein content) also varied considerably among the genotypes. Significant positive correlations between the physiological traits and the yield components could be used to develop screening strategies for stress improvement in breeding. Different expression patterns of stress-responsive microRNAs and their targets in the most stress-tolerant and most stress-sensitive genotype provided some insight into the complex defense molecular networks in durum. Overall, genotypic performance observed indicates that different stress-coping strategies are deployed by varieties under various stresses.Haipei Liu, Amanda J. Able, Jason A. Abl

    Recruitment of larval Atlantic menhaden (Brevoortia tyrannus) to North Carolina and New Jersey estuaries: evidence for larval transport northward along the east coast of the United States

    Get PDF
    Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries

    TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.)

    Get PDF
    Background: Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results: Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.). Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion: Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.Andrew H Lloyd, Andrew S Milligan, Peter Langridge, and Jason A Abl
    corecore