52 research outputs found
The efficacy of secondary cytoreductive surgery for recurrent ovarian, tubal, or peritoneal cancer in Tian-model low-risk patients.
Objective: In patients with recurrent ovarian cancer (ROC) in whom surgery is likely to render them disease-free, it is unclear whether secondary cytoreductive surgery (SCS) combined with chemotherapy is superior to chemotherapy alone. The aim of this study was to evaluate the 2 treatment options in Tian-model low-risk patients. Methods: We retrospectively reviewed 118 ROC cases treated in our hospital between 2004 and 2016. Of these, 52 platinum-sensitive cases were classified as low-risk (complete resection anticipated) using the Tian model. Prognostic factors were assessed with univariate and multivariate analysis using Cox's regression model. Progression-free survival (PFS) and overall survival (OS) were compared in patients treated with SCS plus chemotherapy (SCS group) and those treated with chemotherapy alone (chemotherapy group), using a propensity-score-based matching method. Results: By multivariate analysis, the only factor associated with better OS was SCS. PFS and OS were significantly longer in the SCS group compared to the chemotherapy group in the matched cohort (median PFS: 21.7 vs. 15.1 months, p=0.027 and median OS: 91.4 vs. 33.4 months, p=0.008, respectively). In cases with multiple-site recurrence, the SCS group also showed significantly longer OS than the chemotherapy group (median 91.4 vs. 34.8 months, p=0.022). In almost all SCS cases, cooperation was required from other departments, and operation time was lengthy (median 323 minutes); however, no serious complications occurred. Conclusion: SCS combined with chemotherapy results in better PFS and OS than chemotherapy alone in first platinum-sensitive ROC patients categorized as low-risk by Tian's model
Visceral-to-subcutaneous fat ratio is a possible prognostic factor for type 1 endometrial cancer
[Background] Associations have been observed between obesity defined by the body mass index (BMI) and the incidence of endometrial cancer. However, the impact of obesity on the prognosis of endometrial cancer is not yet clear. Recently, visceral fat has been considered to have a greater impact on malignant disease in obese patients than subcutaneous fat. In this study, we investigated the association between prognostic factors of type 1 and type 2 endometrial cancer and obesity parameters. [Methods] The impacts of clinical factors on the progression-free survival (PFS) and overall survival (OS) were analyzed retrospectively in 145 primary endometrial cancer patients. The factors included age, BMI, pathological findings, Federation of Gynecology and Obstetrics (FIGO) stage, status of lymph node metastasis, and the amounts of visceral and subcutaneous fat obtained from computed tomography (CT) data. [Results] Only the visceral-to-subcutaneous fat ratio (V/S ratio) (cutoff value 0.5) corresponded to a significant difference in OS and PFS in type 1 endometrial cancer (p = 0.0080, p = 0.0053) according to the results of log-rank tests of Kaplan–Meier curves. The COX regression univariate analysis revealed that only the V/S ratio was a significant prognostic factor for PFS, but not OS (p = 0.033 and p = 0.270, respectively). [Conclusion] A V/S ratio > 0.5 is a possible factor for poor prognosis in type 1 endometrial cancer. Further research is needed to investigate the preventive and therapeutic effects of reducing visceral fat on the prognosis of this type of cancer
PDK2 leads to cisplatin resistance through suppression of mitochondrial function in ovarian clear cell carcinoma
Ovarian clear cell carcinoma (CCC) exhibits an association with endometriosis, resistance to oxidative stress, and poor prognosis owing to its resistance to conventional platinum-based chemotherapy. A greater understanding of the molecular characteristics and pathogenesis of ovarian cancer subtypes may facilitate the development of targeted therapeutic strategies, though the mechanism of drug resistance in ovarian CCC has yet to be determined. In this study, we assessed exome sequencing data to identify new therapeutic targets of mitochondrial function in ovarian CCC because of the central role of mitochondria in redox homeostasis. Copy number analyses revealed that chromosome 17q21-24 (chr.17q21-24) amplification was associated with recurrence in ovarian CCC. Cell viability assays identified an association between cisplatin resistance and chr.17q21-24 amplification, and mitochondrion-related genes were enriched in patients with chr.17q21-24 amplification. Patients with high expression of pyruvate dehydrogenase kinase 2 (PDK2) had a worse prognosis than those with low PDK2 expression. Furthermore, inhibition of PDK2 synergistically enhanced cisplatin sensitivity by activating the electron transport chain and by increasing the production of mitochondrial reactive oxygen species. Mouse xenograft models showed that inhibition of PDK2 with cisplatin inhibited tumor growth. This evidence suggests that targeting mitochondrial metabolism and redox homeostasis is an attractive therapeutic strategy for improving drug sensitivity in ovarian CCC
Peritoneal dissemination of high-grade serous ovarian cancer: pivotal roles of chromosomal instability and epigenetic dynamics
Epithelial ovarian cancer remains the lethal gynecological malignancy in women. The representative histotype is high-grade serous carcinoma (HGSC), and most patients with HGSC present at advanced stages with peritoneal dissemination. Since the peritoneal dissemination is the most important factor for poor prognosis of the patients, complete exploration for its molecular mechanisms is mandatory. In this narrative review, being based on the clinical, pathologic, and genomic findings of HGSC, chromosomal instability and epigenetic dynamics have been discussed as the potential drivers for cancer development in the fallopian tube, acquisition of cancer stem cell (CSC)-like properties, and peritoneal metastasis of HGSC. The natural history of carcinogenesis with clonal evolution, and adaptation to microenvironment of peritoneal dissemination of HGSC should be targeted in the novel development of strategies for prevention, early detection, and precision treatment for patients with HGSC
Tertiary lymphoid structures are associated with favorable survival outcomes in patients with endometrial cancer
Immunotherapy has experienced remarkable growth recently. Tertiary lymphoid structures (TLSs) and B cells may play a key role in the immune response and have a survival benefit in some solid tumors, but there have been no reports about their role in endometrial cancer (EC). We investigated the clinicopathological and pathobiological characteristics of the tumor microenvironment (TME) in EC. Patients with EC at Kyoto University Hospital during 2006–2011 were retrospectively included. In 104 patients with EC who met study inclusion criteria, 81 (77.9%) had TLSs, which consisted of areas rich in CD20⁺ B cells, CD8⁺ T cells, CD4⁺ T cells, and CD38⁺ plasma cells. The absence of TLS was independently associated with tumor progression (HR, 0.154; 95% CI, 0.044–0.536; P = 0.003). Patients with TLSs that included CD23⁺ germinal centers had better PFS. All tumor infiltrating lymphocytes were counted in the intratumor site. The number of CD20⁺ B cells was significantly larger in patients with TLSs than in those without TLS (P < 0.001). CD20⁺ B cells numbers were positively correlated with other TLSs. The larger number of CD20⁺ B cell was associated with better PFS (P = 0.015). TLSs and B cell infiltration into tumors are associated with favorable survival outcomes in patients with EC. They may represent an active immune reaction of the TME in endometrial cancer
Low-Grade Endometrial Stromal Sarcoma with a Nodule-in-Nodule Appearance in Preoperative Magnetic Resonance Images
Low-grade endometrial stromal sarcoma (LG-ESS) is a rare malignant disease and demonstrates various patterns in preoperative imaging. Therefore, accurate diagnosis is important. Given its unique form, we report a case of LG-ESS with a nodule-in-nodule appearance on preoperative imaging. A 41-year-old woman was referred to our department for further examination of a 45 mm diameter uterine corpus mass. Preoperative magnetic resonance imaging (MRI) revealed several small nodules within a larger nodule. T2-weighted images showed moderate-to-high signal intensity with focal bands of low signal intensity in the small nodules. The patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy. Histopathological findings of the small nodules showed densely concentrated endometrial stromal cells reminiscent of a proliferative phase endometrium with a concentric arrangement of small spiral arteriole-like vessels. The small nodules exhibited an expansile growth pattern and were surrounded by less densely concentrated endometrial stromal cells intermingled with the normal uterine myometrium. LG-ESS with smooth muscle differentiation and sex cord-like elements was partially observed. In summary, LG-ESS demonstrating a unique nodule-in-nodule appearance on preoperative imaging histopathologically comprised tumor cells of varying densities. Our current case suggests that preoperative diagnostic imaging with MRI may be useful
B7-H3 Suppresses Antitumor Immunity via the CCL2–CCR2–M2 Macrophage Axis and Contributes to Ovarian Cancer Progression
New approaches beyond PD-1/PD-L1 inhibition are required to target the immunologically diverse tumor microenvironment (TME) in high-grade serous ovarian cancer (HGSOC). In this study, we explored the immunosuppressive effect of B7-H3 (CD276) via the CCL2–CCR2–M2 macrophage axis and its potential as a therapeutic target. Transcriptome analysis revealed that B7-H3 is highly expressed in PD-L1–low, nonimmunoreactive HGSOC tumors, and its expression negatively correlated with an IFNγ signature, which reflects the tumor immune reactivity. In syngeneic mouse models, B7-H3 (Cd276) knockout (KO) in tumor cells, but not in stromal cells, suppressed tumor progression, with a reduced number of M2 macrophages and an increased number of IFNγ⁺CD8⁺ T cells. CCL2 expression was downregulated in the B7-H3 KO tumor cell lines. Inhibition of the CCL2–CCR2 axis partly negated the effects of B7-H3 suppression on M2 macrophage migration and differentiation, and tumor progression. In patients with HGSOC, B7-H3 expression positively correlated with CCL2 expression and M2 macrophage abundance, and patients with B7-H3–high tumors had fewer tumoral IFNγ⁺CD8⁺ T cells and poorer prognosis than patients with B7-H3–low tumors. Thus, B7-H3 expression in tumor cells contributes to CCL2–CCR2–M2 macrophage axis–mediated immunosuppression and tumor progression. These findings provide new insights into the immunologic TME and could aid the development of new therapeutic approaches against the unfavorable HGSOC phenotype
Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer
Anoikis resistance is a hallmark of cancer, and relates to malignant phenotypes, including chemoresistance, cancer stem like phenotypes and dissemination. The aim of this study was to identify key factors contributing to anoikis resistance in ovarian cancer using a functional genomics screen. A library of 81 000 shRNAs targeting 15 000 genes was transduced into OVCA420 cells, followed by incubation in soft agar and colony selection. We found shRNAs directed to ABHD2, ELAC2 and CYB5R3 caused reproducible anoikis resistance. These three genes are deleted in many serous ovarian cancers according to The Cancer Genome Atlas data. Suppression of ABHD2 in OVCA420 cells increased phosphorylated p38 and ERK, platinum resistance, and side population cells (p<0.01, respectively). Conversely, overexpression of ABHD2 decreased resistance to anoikis (p<0.05) and the amount of phosphorylated p38 and ERK in OVCA420 and SKOV3 cells. In clinical serous ovarian cancer specimens, low expression of ABHD2 was associated with platinum resistance and poor prognosis (p<0.05, respectively). In conclusion, we found three novel genes relevant to anoikis resistance in ovarian cancer using a functional genomics screen. Suppression of ABHD2 may promote a malignant phenotype and poor prognosis for women with serous ovarian cancer
CXCL13-producing CD4⁺ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer
卵巣がんにおける新たな免疫の仕組みを発見 --三次リンパ様構造の形成メカニズムと予後への影響を解明--. 京都大学プレスリリース. 2022-08-05.Tertiary lymphoid structures (TLSs) are transient ectopic lymphoid aggregates whose formation might be caused by chronic inflammation states, such as cancer. However, how TLSs are induced in the tumor microenvironment (TME) and how they affect patient survival are not well understood. We investigated TLS distribution in relation to tumor infiltrating lymphocytes (TILs) and related gene expression in high grade serous ovarian cancer (HGSC) specimens. CXCL13 gene expression correlated with TLS presence and the infiltration of T cells and B cells, and was a favorable prognostic factor for HGSC patients. Coexistence of CD8⁺ T cells and B-cell lineages in the TME significantly improved the prognosis of HGSC and was correlated with the presence of TLSs. CXCL13 expression was predominantly coincident with CD4⁺ T cells in TLSs and CD8⁺ T cells in TILs, and shifted from CD4⁺ T cells to CD21⁺ follicular dendritic cells as TLS matured. In a mouse ovarian cancer model, recombinant CXCL13 induced TLSs and enhanced survival by the infiltration of CD8⁺ T cells. These results suggest that TLS formation was associated with CXCL13-producing CD4⁺ T cells and that TLSs facilitated the coordinated antitumor response of cellular and humoral immunity in ovarian cancer
- …